For non trivial solutions $Rank(A)= Rank(c)\ne number\;of\;unknows$
\begin{align*}
b^2 - 1 \frac{{(a+bc)}^2}{c^2 -1}&= 0 \\
\implies a^2 + b^2 + c^2 + 2abc &= 1 \\
\end{align*}
Now
\begin{align*}
x - cy -bz &= 0 \\
y + \left(\frac{bc + a}{c^2 - 1}z\right) &= 0 \\
\end{align*}
We get
\begin{align*}
x &= \frac{ac + b}{1-c^2}z \\
y &= \frac{bc + a}{1 - c^2}z \\
z &= z \\
x : y : z &= \sqrt{|1 - a^2|} : \sqrt{|1 - b^2|} : \sqrt{|1 -c^2|}
\end{align*}
\section{Question 4}
\begin{align*}
A &=
\begin{bmatrix}
3 & -4 & 4 \\
1 & -2 & 44 \\
1 & -1 & 3
\end{bmatrix}\\
|A - \lambda I| &= 0\\
\begin{vmatrix}
3 - \lambda& -4 & 4 \\
1 & -2 - \lambda& 44 \\
1 & -1 & 3 - \lambda
\end{vmatrix}&= 0
\end{align*}
\(\lambda=-1, 2, 3\) are Eigen Values
For $\lambda=-1$
\begin{align*}
\begin{bmatrix}
4 & -4 & 4 \\
1 & -1 & 4 \\
1 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
&=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}\\
\text{Eigen Vector}&=
\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}
\end{align*}
For $\lambda=2$
\begin{align*}
\begin{bmatrix}
1 & -4 & 4 \\
1 & -4 & 4 \\
1 & -1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
&=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}\\
\text{Eigen Vector}&=
\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}
\end{align*}
For $\lambda=3$
\begin{align*}
\begin{bmatrix}
0 & -4 & 4 \\
1 & -5 & 4 \\
1 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
&=
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}\\
\text{Eigen Vector}&=
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\end{align*}
\section*{Question 5}
\begin{align*}
A &=
\begin{bmatrix}
2 & 2 & 0 \\
2 & 1 & 1 \\
-7 & 2 & -3
\end{bmatrix}
\\
|A - \lambda I| &= 0 \\
\begin{vmatrix}
2 - \lambda& 2 & 0 \\
2 & 1 - \lambda& 1 \\
-7 & 2 & -3 - \lambda
\end{vmatrix}&= 0
\end{align*}
Eigen values $\lambda=1, 3, -4$\\
1\textsuperscript{st} eigen value of $A^2-2 A + I =1^2-2(1)+1=0$
2\textsuperscript{nd} eigen value of $A^2-2 A + I =3^2-2(3)+1=4$
3\textsuperscript{rd} eigen value of $A^2-2 A + I ={(-4)}^2-2(-4)+1=25$
\section*{Question 6}
\begin{align*}
A &=
\begin{bmatrix}
7 & 3 \\
2 & 6
\end{bmatrix}
\\
| A - \lambda I| &= 0 \\
\begin{vmatrix}
7 - \lambda& 3 \\
2 & 6 - \lambda
\end{vmatrix}&= 0 \\
(7 - \lambda)(6 - \lambda) - 5 &= 0 \\
(\lambda - 4)(\lambda - 9) &= 0 \\
A^2 - 13 A + 36 &= 0 \\
A^2 &= 13 A - 36 \\
A^2\cdot A &= (13 A - 36)A \\
A^3 &= 13 A^2 - 36A \\
A^3 &=
\begin{bmatrix}
715 & 507 \\
338 & 546
\end{bmatrix}
-
\begin{bmatrix}
252 & 108 \\
72 & 216
\end{bmatrix}\\
A^3 &=
\begin{bmatrix}
463 & 399 \\
266 & 330
\end{bmatrix}
\end{align*}
\section*{Question 7}
Suppose that $\lambda$ is a (possibly complex) eigen value of the real symmetric matrix $A$. Thus, there is a non-zero vector $V$, also with complex entries such that $AV =\lambda V$. By taking the complex conjugate of both sides and noting that $\overline{A}= A$ since $A$ has real entries, we get $\overline{AV}=\overline{\lambda V}\implies A\overline{V}=\overline{\lambda}\;\overline{V}$. Then using that $A^T = A$,
\overline{V}^T AV = {(A \overline{V})}^T V = {( \overline{\lambda}\;\overline{V} )}^T V = \overline{\lambda} ( \overline{V} V )
\end{gather*}
Since $V \ne0$, we have $\overline{V}V \ne0$. Thus $\lambda=\overline{\lambda}$, which means $\lambda\in R$.
\section*{Question 8}
Quadratic Form $ax_1^2+ cx_2^2-2bx_1x_2$
\[
\begin{bmatrix}
a & -b \\
-b & c
\end{bmatrix}
\]
Convert it to diagonal matrix by applying
\begin{align*}
R_2 &\to R_2 + \frac{b}{a}R_1 \\
C_2 &\to C_2 + \frac{b}{a}C_1
\end{align*}
Now, we get
\[
\begin{bmatrix}
a & 0 \\
0 & c - \frac{b^2}{a}
\end{bmatrix}
\]
Nature $\to$ positive definite $\to$ when $rank(r)= index(s)$ or when all eigen values are positive i.e. $a > 0$\&$c -\frac{b^2}{a} > 0\implies ac -b^2 > 0$. Hence proved.
\section*{Question 9}
\(
A =
\begin{bmatrix}
\lambda& 1 & 1 \\
1 &\lambda& -1 \\
1 & -1 &\lambda
\end{bmatrix}
\) is a symmetric matrix obtained when compared to Quadratic form $\lambda(x^2+ y^2+ z^2)+2xy +2zx -2yz$.
Now, convert $A$ into diagonal matrix by:
\begin{align*}
C_1 &\to C_1 + C_3 \\
C_1 &\to\frac{C_1}{\lambda + 1}\\
R_3 &\to R_3 - R_1 \\
C_3 &\to C_3 - C_1 \\
C_2 &\to C_2 -C_1 \\
C_3 &\to C_3 + \frac{C_2}{\lambda}\\
R_3 &\to R_3 + \frac{2R_2}{\lambda}
\end{align*}
we get,
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 &\lambda& 0 \\
0 & 0 &\lambda - \frac{2}{\lambda} - 1
\end{bmatrix}
\]
For definite positive nature, all Eigen values must be positive i.e. $\lambda > 0$, $\lambda-\frac{2}{\lambda}-1 > 0$. Taking intersection of these two, we get $\lambda\in(2, \infty)$.
\section*{Question 10}
Multiplication of all the eigen values = determinant of the matrix. For singular matrix, determinant value = 0.
\begin{align*}
\text{Eigen Values}&= 2, 3, a \\
6a &= 0 \\
a &= 0
\end{align*}
\section*{Question 11}
Quadratic Form $x_2^2+2x_2^2-5x_3^2$
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -5
\end{bmatrix}
\]
\begin{align*}
index(s) &= 2\;\text{(No of positive terms)}\\
rank(r) &= 3 \\
signature &= 2s -r = 4 - 3 = 1
\end{align*}
\section*{Question 12}
Quadratic form $ax^2+2bcy + cy^2$.
\[
\begin{bmatrix}
a & b \\
b & c
\end{bmatrix}
\]
Convert it into diagonal matrix by doing:
\begin{align*}
R_2 &\to R_2 - \left(\frac{b}{a}\right)R_1 \\
C_2 &\to C_2 - \left(\frac{b}{a}\right)C_1
\end{align*}
Finally, we get
\[
\begin{bmatrix}
a & 0 \\
0 & c - \frac{b^2}{a}
\end{bmatrix}
\]
For positive definite, $a>0$ and $ac -b^2 > 0$. \\
For negative definite, $a<0$ and $ac -b^2 > 0$. \\
Roots of the quadratic equation ($ax^2+2bx + c =0$) are imaginary when $D < 0$. \\
Since $A + A^T =0$, $A$ must either be skew symmetric. If A is skew symmetric, we know that the rank of an odd order skew symmetric matrix must be even. $\therefore Rank \leq2020$