\documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \title{Assignment --- Second Law of Thermodynamics} \author{Ahmad Saalim Lone, 2019BCSE017} \date{} \maketitle \section*{Question 1} We know that the net power output is the difference between the heat input and the heat rejected (cyclic device). \begin{align*} W_{net,out} &= Q_H + Q_L \\ W_{out} &= 90 - 55 = 35 MW \end{align*} The thermal efficiency is the ratio of net work output and the heat output. \[ \eta_{thermal} = W_{out}\frac{W_{out}}{Q_H} = \frac{35}{90} = 0.3889 \] \section*{Question 2} \begin{align*} \text{efficiency} = 1 - \frac{T_1}{T_2} &= \frac{\text{work input}}{\text{work output}} \;\;\text{(must)}\\ 1 - \frac{300}{1000} &\implies \frac{6}{1} \;\;\text{(claimed)} \\ 0.7 &> 0.6 \\ \text{output} &> \text{claimed $\implies$ good} \end{align*} $\therefore$ we can agree to this claim. \section*{Question 3} \[ \eta = \frac{\text{output}}{\text{input}} = \frac{0.65}{0.65 + 0.4} = 0.619 = 61.9% \] now, \begin{align*} \eta &= 1 - \frac{T_2}{T_1} \\ T_1 &= \frac{T_2}{1 - \eta} \\ T_1 &= 787.5 K \end{align*} $\therefore$, the temperature at which energy is absorbed is 787.5 K \section*{Question 4} \begin{align*} \eta &= 1 - \frac{T_1}{T_2} \\ \end{align*} where, \begin{align*} \eta &= 0.6 \\ T_2 &= 800 K \\ T_1 &= T_{sink} \\ T_{sink} &= (1 - \eta)T_2 \\ &= 324K \end{align*} Also, \begin{align*} \eta &= \frac{Q_1 - Q_{\text{rejected}}}{Q_1} \\ Q_{\text{rejected}} &= Q_1 (1 - \eta) \\ &= 400(1 - 0.6) \\ &= 160 kJ \end{align*} \section*{Question 5} Max COP will be achieved only in a Carnot refrigerator. \[ {(COP_{\max})}_{R} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2} = \frac{-20 + 273}{57} = 4.438 \] Minimum Power $\to$ Max COP\@. We know that $P = \frac{Q}{\eta}$. \[ P = \frac{3 \times 57}{253} = 0.657 W \] \section*{Question 6} Max COP will be achieved only in a Carnot refrigerator. \begin{align*} {(COP)}_{\text{Carnot refrigerator}} &= \frac{T_{low}}{T_{high} - T_{low}} = 1.37 \times 10^{-2} \\ {(COP)}_{\text{refrigerator}} &= \frac{Q_L}{W} = 1.37 \times 10^{-2} \\ Q_L &= 83.3 \\ \end{align*} \section*{Question 7} For process $1-2$ \begin{align*} Q_{1-2} &= U_2 - U_1 + W_{1-2} \\ -732 &= U_2 - U_1 - 2.8 \times 3600 \\ U_2 - U_1 &= 9348kJ \end{align*} For process $2-1$ \begin{align*} Q_{2-1} &= U_1 - U_2 + W_{2-1} \\ -732 &= -9348 - 2.8 \times 3600 \\ Q_{2-1} &= -708 kJ \end{align*} Now, \[ Q_{2-1} = U_1 - U_2 + W_{2-1} \] For maximum work, $Q_{2-1} = 0$. \[ \therefore {(W_{2-1})}_{\max} = U_2 - U_1 = 9348kJ \] \section*{Question 8} \begin{align*} {(COP)}_R &= \frac{268}{298 - 268} = 8.933 \\ {(COP)}_R &= \frac{5}{W} \\ W &= 0.56KW \end{align*} \section*{Question 9} \begin{align*} \eta &= 1 - \frac{273+60}{273+671} = 0.64725 \\ \eta &= 0.3236 \\ \implies 1 - 0.3236 &= 0.6764 \\ \text{Ideal COP} &= \frac{305.2}{305.2 - 266.4} = 7.866 \\ \text{Actual COP} &= 3.923 = \frac{Q_3}{W} \\ if \;Q_3 &= 1kJ \\ \therefore W &= \frac{Q_3}{3.923} = 0.2549kJ \\ W &= Q_{\text{output}} - Q_{\text{input}} = \frac{1}{3.923} Q_1 - 0.6764Q_1 = 0.2549 \\ Q_{\text{out}} &= \frac{0.2549}{1 - 0.6764} = 0.7877 kJ \\ \end{align*} \section*{Question 10} \begin{align*} \frac{10}{W} &= \frac{293}{293-273} \\ or\;W &= 683 W \end{align*} \end{document}