\documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{siunitx} \usepackage{graphicx} \usepackage{wrapfig} \graphicspath{{./images/}} \begin{document} \title{Engineering Mechanics} \author{Ahmad Saalim Lone, 2019BCSE017} \date{14 May, 2020} \maketitle \section*{Question 1} Triangle law of vector addition states that when two vectors are represented by two sides of a triangle in magnitude and direction taken in same order then third side of that triangle represents in magnitude and direction the resultant of the vectors. \begin{align*} P &= 48 N \\ Q &= 60 N \\ R^2 &= P^2 - Q^2 - 2PQ\cos{\ang{150}} \\ R^2 &= 48^2 + 60^2 - 2\times 48 \times 60 \times (-0.866) \\ R^2 &= 10892 \\ R &= 104.36 \\ \cos\theta &= \frac{{P^2 + R^2 - Q^2}}{2PR} \\ \theta &= \ang{16.70} \\ \text{R makes an angle of }(\ang{85} - \ang{16.70}) &= \ang{68.3} \end{align*} \section*{Question 2} \begin{align*} \text{For the $A = 80N$ force} \\ A_x &= 80 \times \cos{\ang{40}} \\ &= 61.28N \\ A_y &= 80 \times \sin{\ang{40}} \\ &= 51.42N \\ \end{align*} \begin{align*} \text{For the $B = 120N$ force} \\ B_x &= 120 \times \cos{\ang{70}} \\ &= 41.04N \\ B_y &= 120 \times \sin{\ang{70}} \\ &= 112.76N \\ \end{align*} \begin{align*} \text{For the $C = 150N$ force} \\ C_x &= 150 \times \cos{\ang{165}} \\ &= -122.87N \\ C_y &= 150 \times \sin{\ang{165}} \\ &= 86.036N \\ \end{align*} \section*{Question 3} \begin{figure*}[h] \centering \includegraphics[width=0.5\textwidth]{t_one_1} \end{figure*} \begin{align*} \cos{\alpha} &= \frac{600}{650} \\ &= 0.923 \\ \sin{\alpha} &= \frac{250}{650} \\ &= 0.384 \end{align*} \begin{align*} T_1 + T_2 \sin \alpha + 360 \sin\ang{37} &= 480 N \\ T_2 \cos \alpha &= 360 \cos \ang{37} \end{align*} From here, \begin{align*} T_1 = \text{The tension in cable } BC &= 143.724 N \\ T_2 = \text{The tension in cable } AC &= 311.5 N \end{align*} \section*{Question 4} Draw Free body diagram of the lower pulley. \begin{figure*}[h] \centering \includegraphics[width=0.5\textwidth]{t_one_2} \end{figure*} \begin{align*} \cos{\theta} &= \frac{0.75}{2.514} = 0.3 \\ \sin{\theta} &= \frac{2.4}{2.514} = 0.954 \\ 2P \cos{\theta} &= P \cos{\alpha} \\ 2P \sin{\theta} + P\sin{\alpha} &= mg \\ \text{From this we get} \\ P &= 738.825 N \\ \alpha &= 53.13N \end{align*} \section*{Question 5} Moments about A \begin{align*} F_1 &= 250 \cos{\ang{30}} \times 2 = 433 Nm \\ F_2 &= 300 \sin{\ang{60}} \times 5 = 1299.04 Nm \\ F_3 &= 500 \times 1 Nm \end{align*} Moments about B \begin{align*} F_1 &= 0 Nm \\ F_2 &= 300 \cos{\ang{60}} \times 4 = 600 Nm \\ F_3 &= 0 Nm \end{align*} \section*{Question 6} \begin{center} Tension in $AD$ is $481N$ \\ Tension in $AB$ is $T_1N$ \\ Tension in $AC$ is $T_2N$ \\ Length of $AD$ is $6.5m$ \\ Length of $AB$ is $7m$ \\ Length of $AC$ is $7.4m$ \\ \end{center} On vertical components \begin{align*} P &= 481 \cos{\ang{30.51}} + T_1 \cos{\ang{35.87}} + T_2 \frac{5.6}{7.4} \\ P &= 414.4 + 0.8 T_1 + 0.75 T_2 \end{align*} On horizontal components \begin{align*} T_1 \sin{\ang{36.87}} N &= T_2 \frac{4.837}{7.4} \sin{\ang{29.74}}N \\ 0.6 \times T_1 &= 0.324 \times T_2 \\ 481 \sin{\ang{30.51}} N &= T_2 \frac{4.837}{7.4} \cos{\ang{29.74}} N \\ 242.2 &= 0.567 \times T_2 \\ T_2 &= 430.6 \\ T_1 &= 232.57 \\ P &= 414.4 + 0.8 \times 242.57 + 0.75 \times 430.6 \\ P &= 923.4 N \end{align*} \section*{Question 7} \begin{align*} \sum{F_A} &= 0 \\ T_{AB} + T_{AC} + T_{AD} + P &= 0 \\ & \text{where P has only one direction that is $\hat{\imath}$} \\ \overrightarrow{AB} &= -(960mm)\hat{\imath} - (240mm)\hat{\jmath} + (380mm)\hat{k} \\ AB &= 1060 mm \\ \overrightarrow{AC} &= -(960mm)\hat{\imath} - (240mm)\hat{\jmath} - (320mm)\hat{k}\\ AC &= 1040 mm \\ \overrightarrow{AD} &= - (960mm)\hat{\imath} + (720mm)\hat{\jmath} - (220mm)\hat{k}\\ AD &= 1220 mm \\ \overrightarrow{T_{AB}} &= T_{AB} \cdot \hat{AB} = T_{AB} \left(-\frac{48}{53} \hat{\imath} - \frac{12}{53} \hat{\jmath} + \frac{19}{53} \hat{k} \right) \\ \overrightarrow{T_{AC}} &= T_{AC} \cdot \hat{AC} = T_{AC} \left(-\frac{12}{13} \hat{\imath} - \frac{3}{13} \hat{\jmath} - \frac{4}{13} \hat{k}\right) \\ \overrightarrow{T_{AD}} &= T_{AD} \cdot \hat{AD} = \frac{305}{1220} \times \overrightarrow{AD} = (-240 \hat{\imath} + 180 \hat{\jmath} - 55 \hat{k}) N \end{align*} We know \begin{align*} \sum F_A &= 0 \\ -\frac{48}{53}T_{AB} - \frac{12}{13} T_{AC} - 240 + P &= 0 \;\text{(X-axis)} \\ -\frac{12}{53}T_{AB} -\frac{3}{13} T_{AC} + 180 &= 0 \;\text{(Y-axis)} \\ -\frac{19}{53}T_{AB} + \frac{4}{13} T_{AC} + 55 &= 0\;\text{(Z-axis)} \\ \end{align*} By solving these equations, we get \begin{align*} T_{AB} &= 446.71 N \\ T_{AC} &= 341.71 N \\ P &= 960 N \end{align*} \section*{Question 8} Calculate the unit vector along each rope just like previous question. \\ Coordinates of point $A, B, C, D$ \begin{align*} A &= 4 \hat{k} m \\ B &= -1.5 \hat{\imath} m - 2 \hat{\jmath} m \\ C &= 2 \hat{\imath} m + 3 \hat{\jmath} m \\ D &= 2.5 \hat{\jmath} m \end{align*} Position vectors of each rope is $reference = 0 \hat{\imath} + 0 \hat{\jmath} + 6 \hat{k}$ \begin{align*} \overrightarrow{r_{AB}} &= -1.5 \hat{\imath} - 6 \hat{k} \\ |r_{AB}| &= 6.5 \\ \overrightarrow{r_{AC}} &= 2 \hat{\imath} - 3 \hat{\jmath} - 6 \hat{k} \\ |r_{AC}| &= 7 \\ \overrightarrow{r_{AD}} &= 2.5 \hat{\jmath} - 6 \hat{k} \\ |r_{AD}| &= 6.5 \end{align*} Now direction of forces are along unit vectors: \begin{align*} \hat{r_{AB}} &= -\frac{1.5}{6.5} \hat{\imath} - \frac{6}{6.5} \hat{k} \\ \hat{r_{AC}} &= \frac{2}{7} \hat{\imath} - \frac{3}{7} \hat{\jmath} - \frac{6}{7} \hat{k} \\ \hat{r_{AD}} &= \frac{2.5}{6.5} \hat{\jmath} - \frac{6}{7} \hat{k} \end{align*} \[ \sum F_A = 0 \] So, \begin{align*} -0.231 F_{AB} + 0.286 F_{AC} &= 0 \\ -0.308 F_{AB} - 0.429 F_{AC} + 0.385 F_{AD} &= 0 \\ -0.923 F_{AB} - 0.857 F_{AC} - 0.923 F_{AD} &= -800 \end{align*} On solving these three equations, we get \begin{align*} F_{AB} &= 251.2N \\ F_{AC} &= 202.9N \\ F_{AD} &= 427.1 N \end{align*} \end{document}