\documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{siunitx} \usepackage{graphicx} \usepackage{wrapfig} \graphicspath{{./images/}} \begin{document} \title{Engineering Mechanics} \author{Ahmad Saalim Lone, 2019BCSE017} \date{17 May, 2020} \maketitle \section*{Question 1} \subsection*{Question 1.a} We shall balance the torque about $C$. $\angle ABC = \theta$, Tension in cable $=T$. \begin{align*} 240 (0.4) + 240 (0.8) &= T\sin{\theta} \times 0.18 \\ T\sin{\theta} &= 1600 \\ T \frac{0.24}{0.3} &= 1600 \\ T &= 2000 \end{align*} \subsection*{Question 1.b} On making FBD of bracket BCD.\@ \begin{align*} x-component &= N_x = T\sin{\theta} = 1600 \\ y-component &= N_y = T\cos{\theta} + 240 +240 = 1680 \end{align*} \section*{Question 2} \subsection*{Question 2.a} We shall balance the torque about C \begin{align*} P \times 7.5 &= T \times 5 \\ T &= 150 lb \end{align*} \subsection*{Question 2.b} \begin{align*} N_x \text{(reaction at C along x-axis)} &= - (P + T\sin{\ang{37}}) = -190 lb \\ N_y \text{(reaction at C along y-axis)} &= - T \cos{\ang{37}} = -120 lb \end{align*} \section*{Question 3} \subsection*{Question 3.a} \[ \alpha = 0 \] Balance torque about B \begin{align*} N_a \times 20 &= 75 \times 10 \\ N_a &= 37.5 lb \end{align*} Balance torque about A \begin{align*} N_b \times 20 &= 75 \times 10 \\ N_b &= 37.5 lb \end{align*} \subsection*{Question 3.b} \[ \alpha = \ang{90} \] Balance torque about A \begin{align*} N_b \times 20 &= 75 \times 10 \\ N_b &= 37.5 lb \end{align*} Balance torque about B \begin{align*} N_a \times 12 &= 75 \times 10 \\ N_a &= 62.5 lb \end{align*} \subsection*{Question 3.c} \[ \alpha = \ang{30} \] Balance torque about the mid point of horizontal rod \begin{align*} N_a \times 10 &= {(N_b)}_y \times 10 \\ N_a &= {(N_b)}_y \end{align*} Balance torque about B \begin{align*} N_a \times 20 &= 75 \times 10 \\ N_a &= 37.5 lb \\\\ N_a &= N_b \cos{\ang{30}} \\ N_b &= 43.30 \end{align*} \section*{Question 4} \subsection*{Question 4.a} Balance torque about C \begin{align*} 120 \times 0.28 &= T \times \frac{150}{250} \times 0.2 + T \times \frac{150}{390} \times 0.36 \\ 33.6 &= T \times 0.26 \\ T &= 129.2 N \approx 130 N \end{align*} \subsection*{Question 4.b} \begin{align*} {(N_c)}_x &= T \times \frac{200}{250} + T \times \frac{360}{390} \\ {(N_c)}_x &= 223 N \\ {(N_c)}_y &= 120 - \left(T \times \frac{150}{250} + T \times \frac{150}{390}\right) \\ {(N_c)}_y &= -7.21 N \\ N_c &= \sqrt{223^2 + 7.21^2} N \\ N_c &= 224 N \end{align*} \section*{Question 5} Balance torque about B \begin{align*} {(N_a)}_y \times 8 &= 4000 \times 2 \\ {(N_a)}_y &= 1000 N \end{align*} FBD of Rod \begin{align*} 4000 &= {(N_A)}_y + {(N_B)}_y \\ 4000 &= 1000 + {(N_B)}_y \\ {(N_B)}_y &= 3000 \\\\ {(N_B)}_y &= N_b \sin{\ang{60}} \\ N_B &= 3465 \\ {(N_A)}_x &= {(N_B)}_x \\ {(N_A)}_x &= N_B \sin{\ang{30}} \\ {(N_A)}_x &= 1732 \end{align*} \section*{Question 6} First we have to calculate reaction at A \begin{align*} \sum F_x &= 0 \\ 4000 \cos{\ang{30}} &= A_x \\ A_x &= 3464 N \end{align*} \begin{align*} \sum F_y &= 0 \\ 6000 + 4000 \cos{\ang{30}} &= A_y \\ A_y &= 8000 N \end{align*} \end{document}