\documentclass{article} % Import for matrices \usepackage{amsmath} % Import for therefore symbol \usepackage{amssymb} \begin{document} \title{Mathematics Assignment --- Matrices} \author{Ahmad Saalim Lone, 2019BCSE017} \date{05 May, 2020} \maketitle \section{Question 1} \begin{equation} A = \begin{bmatrix} 2 & -5 & -1 \\ -2 & -1 & 4 \end{bmatrix} B = \begin{bmatrix} 3 & 4 & 0 \\ 5 & -2 & 3 \end{bmatrix} \end{equation} \subsection{Part i} \begin{equation} A + B = \begin{bmatrix} 2 + 1 & -5 + 4 & -1 + 0 \\ -2 + 5 & -1 -2 & 4 + 3 \end{bmatrix} \end{equation} \begin{equation} A + B = \begin{bmatrix} 3 & -1 & -1 \\ 3 & -3 & 7 \end{bmatrix} \end{equation} \subsection{Part ii} \begin{equation} 2A + B = \begin{bmatrix} 4 + 1 & -10 + 4 & -2 + 0 \\ -4 + 5 & -2 -2 & 8 + 3 \end{bmatrix} \end{equation} \begin{equation} 2A + B = \begin{bmatrix} 5 & -6 & -2 \\ 1 & -4 & 11 \end{bmatrix} \end{equation} \section{Question 2} \begin{equation} A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 2 \\ 5 & 2 & 3 \end{bmatrix} \end{equation} \begin{equation} AB = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 2 \\ 5 & 2 & 3 \end{bmatrix} \end{equation} \begin{equation} AB = \begin{bmatrix} 1 \times 1 + 2 \times 2 + 3 \times 5 & 1 \times 0 + 2 \times 1 + 3 \times 2 & 1 \times 2 + 2 \times 2 + 3 \times 3 \\ 4 \times 1 + 5 \times 2 + 6 \times 5 & 4 \times 0 + 5 \times 1 + 6 \times 2 & 4 \times 2 + 5 \times 2 + 6 \times 3 \\ 7 \times 1 + 8 \times 2 + 9 \times 5 & 7 \times 0 + 8 \times 1 + 9 \times 2 & 7 \times 2 + 8 \times 2 + 9 \times 3 \end{bmatrix} \end{equation} \begin{equation} AB = \begin{bmatrix} 20 & 8 & 16 \\ 44 & 17 & 36 \\ 68 & 26 & 57 \end{bmatrix} \end{equation} \section{Question 3} If \( A = \begin{bmatrix} 1 & -2 & -3 \\ -4 & 2 & 5 \end{bmatrix} B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} \), show that \(AB \ne BA\). Order of $A$ = $2\times3$ Order of $B$ = $3\times2$ Order of $AB$ = $rows \; of \; A \times columns \; of \; B$ = $2\times2$ Order of $BA$ = $rows \; of \; B \times columns \; of \; A$ = $3\times3$ Matrices of different order can't be equal. $\therefore AB \ne BA$ \section{Question 4} Show that \( A = \begin{bmatrix} 3 & 1 + 2i \\ 1-2i & 2 \end{bmatrix} \) is a hermitian. For a matrix to be hermitian, each element $a_{i,j}$ needs to be the complex conjugate of the element at $a_{j,i}$. In given matrix, we have \begin{itemize} \item \(a_{11} = 3\) \item \(a_{12} = 1 + 2i\) \item \(a_{21} = 1 - 2i\) \item \(a_{22} = 2\) \end{itemize} The conjugates are as follows \begin{itemize} \item \(\overline{a_{11}} = 3\) \item \(\overline{a_{12}} = 1 - 2i\) \item \(\overline{a_{21}} = 1 + 2i\) \item \(\overline{a_{22}} = 2\) \end{itemize} As we can see, \(\overline{a_{11}} = a_{11}\), \(\overline{a_{12}} = a_{21}\), \(\overline{a_{21}} = a_{12}\) and \(\overline{a_{22}} = a_{22}\). $\therefore A$ is hermitian. \section{Question 5} If \( A = \begin{bmatrix} 5 & 1 + i \\ -1 + i & 4 \end{bmatrix} \), show that ${(A^{\theta})}^{\theta}$ \[ A = \begin{bmatrix} 5 & 1 + i \\ -1 + i & 4 \end{bmatrix} \] \[ \overline{A^{\theta}} = \begin{bmatrix} 5 & - 1 - i \\ 1 + i & 4 \end{bmatrix} \] \[ {(A^{\theta})}^{\theta} = \begin{bmatrix} 5 & 1 + i \\ -1 + i & 4 \end{bmatrix} \] \[ \therefore {(A^{\theta})}^{\theta} = A \] \end{document}