\documentclass{article} \usepackage{amsmath} \usepackage{amssymb} \begin{document} \title{Mathematics Assignment 4 --- Matrices} \author{Ahmad Saalim Lone, 2019BCSE017} \date{16 May, 2020} \maketitle \section*{Question 1} \begin{align*} A &= \begin{bmatrix} 1 & -1 & -1 & 2 \\ 4 & 2 & 2 & -1 \\ 2 & 2 & 0 & -2 \end{bmatrix} \\ PAQ &= \text{Normal form} \\ I_3AI_4 &= A_{3 \times 4} \\ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} &= \begin{bmatrix} 1 & -1 & -1 & 2 \\ 4 & 2 & 2 & -1 \\ 2 & 2 & 0 & -2 \end{bmatrix} \end{align*} Applying the following row tranformations on $I_3$ and column tranformations on $I_4$. \begin{align*} C_4 &\to C_4 + C_2 \\ R_3 &\to \frac{R_3}{2} \\ R_2 &\to \frac{R_2 + 2R_1}{3} \\ R_1 &\to R_1 + R_3 \\ C_1 &\to C_1 - 2 C_4 \\ C_4 &\to C_4 + C_3 \\ C_2 &\to C_2 - C_1 \\ C_3 &\rightleftharpoons C_1 \\ C_2 &\rightleftharpoons C_4 \\ R_1 &\rightleftharpoons -R_1 \end{align*} we get \begin{align*} P &= \begin{bmatrix} -1 & 0 & -\frac{1}{2} \\[6pt] \frac{2}{3} & \frac{1}{3} & 0 \\[6pt] 0 & 0 & \frac{1}{2} \end{bmatrix} \\ Q &= \begin{bmatrix} 0 & 0 & 1 & -1 \\ 0 & 0 & -2 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & 2 \end{bmatrix} \\ \text{Normal Form of A} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \end{align*} \section*{Question 2} \[ x^2yz = xy^2z^3 = x^3y^2z = e \] Taking $\ln$ on both sides \begin{align*} 2\ln{x} + \ln{y} \ln{z} &= 1 \\ \ln{x} + 2 \ln{y} + 3 \ln{z} &= 1 \\ 3\ln{x} + 2\ln{y} + \ln{z} &= 1 \end{align*} \[ \text{Augemented Matrix} = [A:B] = \begin{bmatrix} 2 & 1 & 1 & : & 1 \\ 1 & 2 & 3 & : & 1 \\ 3 & 2 & 1 & : & 1 \end{bmatrix} \] After ppling the following tranformations \begin{align*} R_3 &\to R_3 - R_1 \\ R_2 &\to R_2 - R_1 \\ R_2 &\to R_2 - R_1 \\ R_1 &\to R_1 -R_3 \end{align*} We get \[ \begin{bmatrix} 1 & 0 & 1 & : & 1 \\ -3 & 0 & 1 & : & -1 \\ 1 & 1 & 0 & : & 0 \end{bmatrix} \] $Rank(A) = Rank(A:B) = 3 = n$\\ $\therefore$ unique solution. \section*{Question 3} \begin{align*} x - cy - bz &= 0 \\ cx - y + az &= 0 \\ bx + ay - z &= 0 \\ \text{Augemented matrix} &= \begin{bmatrix} 1 & -c & -b & : & 0 \\ c & -1 & a & : & 0 \\ b & a & -1 & : & 0 \end{bmatrix} \end{align*} Applying the following tranformations \begin{align*} R_2 &\to R_2 - cR_1 \\ R_3 &\to R_3 - bR_1 \\ R_2 &\to \frac{R_2}{c^2 - 1} \\ R_3 &\to R_3 - (a + bc)R_2 \end{align*} we get \[ C = \begin{bmatrix} 1 & -c & -b & : & 0 \\[6pt] 0 & 1 & \frac{bc+c}{c^2 - 1} & : & 0 \\[6pt] 0 & 0 & b^2 - 1 - \frac{{(a+bc)}^2}{c^2 - 1} & : & 0 \end{bmatrix} \] For non trivial solutions $Rank(A) = Rank(c) \ne number\;of\;unknows$ \begin{align*} b^2 - 1 \frac{{(a+bc)}^2}{c^2 -1} &= 0 \\ \implies a^2 + b^2 + c^2 + 2abc &= 1 \\ \end{align*} Now \begin{align*} x - cy -bz &= 0 \\ y + \left(\frac{bc + a}{c^2 - 1}z\right) &= 0 \\ \end{align*} We get \begin{align*} x &= \frac{ac + b}{1-c^2}z \\ y &= \frac{bc + a}{1 - c^2}z \\ z &= z \\ x : y : z &= \sqrt{|1 - a^2|} : \sqrt{|1 - b^2|} : \sqrt{|1 -c^2|} \end{align*} \section{Question 4} \begin{align*} A &= \begin{bmatrix} 3 & -4 & 4 \\ 1 & -2 & 44 \\ 1 & -1 & 3 \end{bmatrix} \\ |A - \lambda I| &= 0\\ \begin{vmatrix} 3 - \lambda & -4 & 4 \\ 1 & -2 - \lambda & 44 \\ 1 & -1 & 3 - \lambda \end{vmatrix} &= 0 \end{align*} \( \lambda = -1, 2, 3 \) are Eigen Values For $\lambda = -1$ \begin{align*} \begin{bmatrix} 4 & -4 & 4 \\ 1 & -1 & 4 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \text{Eigen Vector} &= \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \end{align*} For $\lambda = 2$ \begin{align*} \begin{bmatrix} 1 & -4 & 4 \\ 1 & -4 & 4 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \text{Eigen Vector} &= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \end{align*} For $\lambda = 3$ \begin{align*} \begin{bmatrix} 0 & -4 & 4 \\ 1 & -5 & 4 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \text{Eigen Vector} &= \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{align*} \section*{Question 5} \begin{align*} A &= \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix} \\ |A - \lambda I| &= 0 \\ \begin{vmatrix} 2 - \lambda & 2 & 0 \\ 2 & 1 - \lambda & 1 \\ -7 & 2 & -3 - \lambda \end{vmatrix} &= 0 \end{align*} Eigen values $\lambda = 1, 3, -4$ \\ 1\textsuperscript{st} eigen value of $A^2 -2 A + I = 1^2 - 2(1) + 1 = 0$ 2\textsuperscript{nd} eigen value of $A^2 -2 A + I = 3^2 - 2(3) + 1 = 4$ 3\textsuperscript{rd} eigen value of $A^2 -2 A + I = {(-4)}^2 - 2(-4) + 1 = 25$ \section*{Question 6} \begin{align*} A &= \begin{bmatrix} 7 & 3 \\ 2 & 6 \end{bmatrix} \\ | A - \lambda I| &= 0 \\ \begin{vmatrix} 7 - \lambda & 3 \\ 2 & 6 - \lambda \end{vmatrix} &= 0 \\ (7 - \lambda)(6 - \lambda) - 5 &= 0 \\ (\lambda - 4)(\lambda - 9) &= 0 \\ A^2 - 13 A + 36 &= 0 \\ A^2 &= 13 A - 36 \\ A^2\cdot A &= (13 A - 36)A \\ A^3 &= 13 A^2 - 36A \\ A^3 &= \begin{bmatrix} 715 & 507 \\ 338 & 546 \end{bmatrix} - \begin{bmatrix} 252 & 108 \\ 72 & 216 \end{bmatrix} \\ A^3 &= \begin{bmatrix} 463 & 399 \\ 266 & 330 \end{bmatrix} \end{align*} \section*{Question 7} Suppose that $\lambda$ is a (possibly complex) eigen value of the real symmetric matrix $A$. Thus, there is a non-zero vector $V$, also with complex entries such that $AV = \lambda V$. By taking the complex conjugate of both sides and noting that $\overline{A} = A$ since $A$ has real entries, we get $\overline{AV} = \overline{\lambda V} \implies A\overline{V} = \overline{\lambda}\;\overline{V}$. Then using that $A^T = A$, \begin{gather*} \overline{V}^T AV = \overline{V}^t(AV) = \overline{V}(\lambda V) = \lambda( \overline{V}V ) \\ \overline{V}^T AV = {(A \overline{V})}^T V = {( \overline{\lambda}\;\overline{V} )}^T V = \overline{\lambda} ( \overline{V} V ) \end{gather*} Since $V \ne 0$, we have $ \overline{V}V \ne 0$. Thus $\lambda = \overline{\lambda}$, which means $\lambda \in R$. \section*{Question 8} Quadratic Form $ax_1^2 + cx_2^2 - 2bx_1x_2$ \[ \begin{bmatrix} a & -b \\ -b & c \end{bmatrix} \] Convert it to diagonal matrix by applying \begin{align*} R_2 &\to R_2 + \frac{b}{a}R_1 \\ C_2 &\to C_2 + \frac{b}{a}C_1 \end{align*} Now, we get \[ \begin{bmatrix} a & 0 \\ 0 & c - \frac{b^2}{a} \end{bmatrix} \] Nature $\to$ positive definite $\to$ when $rank(r) = index(s)$ or when all eigen values are positive i.e. $a > 0$ \& $c - \frac{b^2}{a} > 0 \implies ac -b^2 > 0$. Hence proved. \section*{Question 9} \( A = \begin{bmatrix} \lambda & 1 & 1 \\ 1 & \lambda & -1 \\ 1 & -1 & \lambda \end{bmatrix} \) is a symmetric matrix obtained when compared to Quadratic form $\lambda(x^2+ y^2 + z^2) + 2xy + 2zx -2yz$. Now, convert $A$ into diagonal matrix by: \begin{align*} C_1 &\to C_1 + C_3 \\ C_1 &\to \frac{C_1}{\lambda + 1} \\ R_3 &\to R_3 - R_1 \\ C_3 &\to C_3 - C_1 \\ C_2 &\to C_2 -C_1 \\ C_3 &\to C_3 + \frac{C_2}{\lambda} \\ R_3 &\to R_3 + \frac{2R_2}{\lambda} \end{align*} we get, \[ \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda - \frac{2}{\lambda} - 1 \end{bmatrix} \] For definite positive nature, all Eigen values must be positive i.e. $\lambda > 0$, $\lambda - \frac{2}{\lambda} - 1 > 0$. Taking intersection of these two, we get $\lambda \in (2, \infty)$. \section*{Question 10} Multiplication of all the eigen values = determinant of the matrix. For singular matrix, determinant value = 0. \begin{align*} \text{Eigen Values} &= 2, 3, a \\ 6a &= 0 \\ a &= 0 \end{align*} \section*{Question 11} Quadratic Form $x_2^2 + 2x_2^2 - 5x_3^2$ \[ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -5 \end{bmatrix} \] \begin{align*} index(s) &= 2\;\text{(No of positive terms)} \\ rank(r) &= 3 \\ signature &= 2s -r = 4 - 3 = 1 \end{align*} \section*{Question 12} Quadratic form $ax^2 + 2bcy + cy^2$. \[ \begin{bmatrix} a & b \\ b & c \end{bmatrix} \] Convert it into diagonal matrix by doing: \begin{align*} R_2 &\to R_2 - \left(\frac{b}{a}\right)R_1 \\ C_2 &\to C_2 - \left(\frac{b}{a}\right)C_1 \end{align*} Finally, we get \[ \begin{bmatrix} a & 0 \\ 0 & c - \frac{b^2}{a} \end{bmatrix} \] For positive definite, $a>0$ and $ac -b^2 > 0$. \\ For negative definite, $a<0$ and $ac -b^2 > 0$. \\ Roots of the quadratic equation ($ax^2 + 2bx + c = 0$) are imaginary when $D < 0$. \\ ${(2b)}^2 - 4ac = 4( b^2 - ac )$ is always negative \section*{Question 13} \begin{align*} X_1 &= \begin{bmatrix} 1 \\ 2 \\ -3 \\ 4 \end{bmatrix} \\ X_2 &= \begin{bmatrix} 1 \\ -5 \\ 8 \\ -7 \end{bmatrix} \\ X_3 &= \begin{bmatrix} 1 \\ -5 \\ 8 \\ -7 \end{bmatrix} \\ \lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 &= 0 \\ \begin{bmatrix} 1 & 1 & 1 \\ 2 & -5 & -5 \\ -3 & 8 & 8 \\ 4 & -7 & -7 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \end{align*} Applying the following tranformations \begin{align*} R_2 &\to R_2 - 2R_1 \\ R_2 &\to -\frac{R_2}{7} \\ R_3 &\to R_3 + R_4 \\ R_3 &\to R_3 - R_1 \\ R_1 &\to R_1 - R_2 \\ R_3 &\to R_3 - 4 R_1 \\ R_4 &\to -\frac{R_4}{7} \\ R_4 &\to R_4 - R_2 \end{align*} we get \begin{align*} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \lambda_1 + 2\lambda_2 &= 0 \\ \lambda_2 + \lambda_3 &= 0 \therefore \\ \lambda_1 &= t \\ \lambda_2 &= -\frac{t}{2} \\ \lambda_3 &= \frac{t}{2} \end{align*} Putting the values, we get \[ 2 X_1 - X_2 + X_3 = 0 \] \section*{Question 14} \begin{align*} (2 - \lambda)x_1 + (-2)x_2 + x_3 &= 0 \\ 2x_1 - (\lambda + 3) x_2 + 2x_3 &= 0 \\ -x_1 + 2x_2 - \lambda x_3 &= 0 \end{align*} \( Rank(A) = Rank(\text{augemented matrix}) < 3 \) for non trivial solutions. Check the determinant first, $\Delta = 0$ $\Delta = 0$ gets us $\lambda = 1, 3$ Now, for augemented matrix $[A:B]$, put $\lambda = 1, -3$ in \( \begin{bmatrix} 2-\lambda & -2 & 1 & : & 0 \\ 2 & -(\lambda + 3) & 2 & : & 0 \\ -1 & 2 & -\lambda & : & 0 \end{bmatrix} \) For $\lambda = 1$ \[ \begin{bmatrix} 1 & -2 & 1 & : & 0 \\ 2 & -4 & 2 & : & 0 \\ -1 & 2 & -1 & : & 0 \end{bmatrix} \] Doing transformations to form row echelon form, we get \[ \begin{bmatrix} 1 & -2 & 1 & : & 0 \\ 0 & 0 & 0 & : & 0 \\ 0 & 0 & 0 & : & 0 \end{bmatrix} \] \begin{align*} x_1 -2x_2 + x_3 &= 0 \\ if\;x_2 = k,\;x_3 = t, then\;x_1 &= 2k - t \end{align*} For $\lambda = -3$ \[ \begin{bmatrix} 5 & -2 & 1 & : & 0 \\ 2 & 0 & 2 & : & 0 \\ -1 & 2 & 3 & : & 0 \end{bmatrix} \] Doing transformations to form row echelon form, we get \[ \begin{bmatrix} 5 & -2 & 1 & : & 0 \\ 0 & \frac{4}{5} & \frac{8}{5} & : & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \] \begin{align*} 5x_1 - 2x_2 + x_3 &= 0 \\ \frac{4x_2}{5} + \frac{8x_3}{5} &= 0 \\ if\;x_3 = t, then \\ x_1 &= - t \\ x_2 &= -2t \\ x_3 &= t \end{align*} \section*{Question 15} \subsection*{Part i} Since $A + A^T = 0$, $A$ must either be skew symmetric. If A is skew symmetric, we know that the rank of an odd order skew symmetric matrix must be even. $\therefore Rank \leq 2020$ \subsection*{Part ii} Inverse does not exist as $A$ is singular matrix. \end{document}