602 lines
11 KiB
TeX
602 lines
11 KiB
TeX
\documentclass{article}
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\begin{document}
|
|
\title{Mathematics Assignment 4 --- Matrices}
|
|
\author{Ahmad Saalim Lone, 2019BCSE017}
|
|
\date{16 May, 2020}
|
|
\maketitle
|
|
|
|
\section*{Question 1}
|
|
\begin{align*}
|
|
A &=
|
|
\begin{bmatrix}
|
|
1 & -1 & -1 & 2 \\
|
|
4 & 2 & 2 & -1 \\
|
|
2 & 2 & 0 & -2
|
|
\end{bmatrix}
|
|
\\
|
|
PAQ &= \text{Normal form} \\
|
|
I_3AI_4 &= A_{3 \times 4} \\
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 \\
|
|
0 & 1 & 0 \\
|
|
0 & 0 & 1
|
|
\end{bmatrix}
|
|
A
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 \\
|
|
0 & 0 & 1 & 0 \\
|
|
0 & 0 & 0 & 1
|
|
\end{bmatrix}
|
|
&=
|
|
\begin{bmatrix}
|
|
1 & -1 & -1 & 2 \\
|
|
4 & 2 & 2 & -1 \\
|
|
2 & 2 & 0 & -2
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
|
|
Applying the following row tranformations on $I_3$ and column tranformations on $I_4$.
|
|
|
|
\begin{align*}
|
|
C_4 &\to C_4 + C_2 \\
|
|
R_3 &\to \frac{R_3}{2} \\
|
|
R_2 &\to \frac{R_2 + 2R_1}{3} \\
|
|
R_1 &\to R_1 + R_3 \\
|
|
C_1 &\to C_1 - 2 C_4 \\
|
|
C_4 &\to C_4 + C_3 \\
|
|
C_2 &\to C_2 - C_1 \\
|
|
C_3 &\rightleftharpoons C_1 \\
|
|
C_2 &\rightleftharpoons C_4 \\
|
|
R_1 &\rightleftharpoons -R_1
|
|
\end{align*}
|
|
|
|
we get
|
|
\begin{align*}
|
|
P &=
|
|
\begin{bmatrix}
|
|
-1 & 0 & -\frac{1}{2} \\[6pt]
|
|
\frac{2}{3} & \frac{1}{3} & 0 \\[6pt]
|
|
0 & 0 & \frac{1}{2}
|
|
\end{bmatrix}
|
|
\\
|
|
Q &=
|
|
\begin{bmatrix}
|
|
0 & 0 & 1 & -1 \\
|
|
0 & 0 & -2 & 3 \\
|
|
1 & 1 & 0 & 0 \\
|
|
0 & 1 & -2 & 2
|
|
\end{bmatrix}
|
|
\\
|
|
\text{Normal Form of A} &=
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 \\
|
|
0 & 0 & 1 & 0
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
\section*{Question 2}
|
|
\[
|
|
x^2yz = xy^2z^3 = x^3y^2z = e
|
|
\]
|
|
|
|
Taking $\ln$ on both sides
|
|
\begin{align*}
|
|
2\ln{x} + \ln{y} \ln{z} &= 1 \\
|
|
\ln{x} + 2 \ln{y} + 3 \ln{z} &= 1 \\
|
|
3\ln{x} + 2\ln{y} + \ln{z} &= 1
|
|
\end{align*}
|
|
|
|
\[
|
|
\text{Augemented Matrix} = [A:B] =
|
|
\begin{bmatrix}
|
|
2 & 1 & 1 & : & 1 \\
|
|
1 & 2 & 3 & : & 1 \\
|
|
3 & 2 & 1 & : & 1
|
|
\end{bmatrix}
|
|
\]
|
|
After ppling the following tranformations
|
|
\begin{align*}
|
|
R_3 &\to R_3 - R_1 \\
|
|
R_2 &\to R_2 - R_1 \\
|
|
R_2 &\to R_2 - R_1 \\
|
|
R_1 &\to R_1 -R_3
|
|
\end{align*}
|
|
|
|
We get
|
|
\[
|
|
\begin{bmatrix}
|
|
1 & 0 & 1 & : & 1 \\
|
|
-3 & 0 & 1 & : & -1 \\
|
|
1 & 1 & 0 & : & 0
|
|
\end{bmatrix}
|
|
\]
|
|
$Rank(A) = Rank(A:B) = 3 = n$\\
|
|
$\therefore$ unique solution.
|
|
\section*{Question 3}
|
|
\begin{align*}
|
|
x - cy - bz &= 0 \\
|
|
cx - y + az &= 0 \\
|
|
bx + ay - z &= 0 \\
|
|
\text{Augemented matrix} &=
|
|
\begin{bmatrix}
|
|
1 & -c & -b & : & 0 \\
|
|
c & -1 & a & : & 0 \\
|
|
b & a & -1 & : & 0
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
|
|
Applying the following tranformations
|
|
\begin{align*}
|
|
R_2 &\to R_2 - cR_1 \\
|
|
R_3 &\to R_3 - bR_1 \\
|
|
R_2 &\to \frac{R_2}{c^2 - 1} \\
|
|
R_3 &\to R_3 - (a + bc)R_2
|
|
\end{align*}
|
|
we get
|
|
\[
|
|
C =
|
|
\begin{bmatrix}
|
|
1 & -c & -b & : & 0 \\[6pt]
|
|
0 & 1 & \frac{bc+c}{c^2 - 1} & : & 0 \\[6pt]
|
|
0 & 0 & b^2 - 1 - \frac{{(a+bc)}^2}{c^2 - 1} & : & 0
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
For non trivial solutions $Rank(A) = Rank(c) \ne number\;of\;unknows$
|
|
\begin{align*}
|
|
b^2 - 1 \frac{{(a+bc)}^2}{c^2 -1} &= 0 \\
|
|
\implies a^2 + b^2 + c^2 + 2abc &= 1 \\
|
|
\end{align*}
|
|
Now
|
|
\begin{align*}
|
|
x - cy -bz &= 0 \\
|
|
y + \left(\frac{bc + a}{c^2 - 1}z\right) &= 0 \\
|
|
\end{align*}
|
|
We get
|
|
\begin{align*}
|
|
x &= \frac{ac + b}{1-c^2}z \\
|
|
y &= \frac{bc + a}{1 - c^2}z \\
|
|
z &= z \\
|
|
x : y : z &= \sqrt{|1 - a^2|} : \sqrt{|1 - b^2|} : \sqrt{|1 -c^2|}
|
|
\end{align*}
|
|
|
|
\section{Question 4}
|
|
\begin{align*}
|
|
A &=
|
|
\begin{bmatrix}
|
|
3 & -4 & 4 \\
|
|
1 & -2 & 44 \\
|
|
1 & -1 & 3
|
|
\end{bmatrix} \\
|
|
|A - \lambda I| &= 0\\
|
|
\begin{vmatrix}
|
|
3 - \lambda & -4 & 4 \\
|
|
1 & -2 - \lambda & 44 \\
|
|
1 & -1 & 3 - \lambda
|
|
\end{vmatrix} &= 0
|
|
\end{align*}
|
|
|
|
\( \lambda = -1, 2, 3 \) are Eigen Values
|
|
|
|
For $\lambda = -1$
|
|
\begin{align*}
|
|
\begin{bmatrix}
|
|
4 & -4 & 4 \\
|
|
1 & -1 & 4 \\
|
|
1 & -1 & 4
|
|
\end{bmatrix}
|
|
\begin{bmatrix}
|
|
x \\
|
|
y \\
|
|
z
|
|
\end{bmatrix}
|
|
&=
|
|
\begin{bmatrix}
|
|
0 \\
|
|
0 \\
|
|
0
|
|
\end{bmatrix} \\
|
|
\text{Eigen Vector} &=
|
|
\begin{bmatrix}
|
|
1 \\
|
|
1 \\
|
|
0
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
For $\lambda = 2$
|
|
\begin{align*}
|
|
\begin{bmatrix}
|
|
1 & -4 & 4 \\
|
|
1 & -4 & 4 \\
|
|
1 & -1 & 1
|
|
\end{bmatrix}
|
|
\begin{bmatrix}
|
|
x \\
|
|
y \\
|
|
z
|
|
\end{bmatrix}
|
|
&=
|
|
\begin{bmatrix}
|
|
0 \\
|
|
0 \\
|
|
0
|
|
\end{bmatrix} \\
|
|
\text{Eigen Vector} &=
|
|
\begin{bmatrix}
|
|
0 \\
|
|
1 \\
|
|
1
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
For $\lambda = 3$
|
|
\begin{align*}
|
|
\begin{bmatrix}
|
|
0 & -4 & 4 \\
|
|
1 & -5 & 4 \\
|
|
1 & -1 & 0
|
|
\end{bmatrix}
|
|
\begin{bmatrix}
|
|
x \\
|
|
y \\
|
|
z
|
|
\end{bmatrix}
|
|
&=
|
|
\begin{bmatrix}
|
|
0 \\
|
|
0 \\
|
|
0
|
|
\end{bmatrix} \\
|
|
\text{Eigen Vector} &=
|
|
\begin{bmatrix}
|
|
1 \\
|
|
1 \\
|
|
1
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
\section*{Question 5}
|
|
\begin{align*}
|
|
A &=
|
|
\begin{bmatrix}
|
|
2 & 2 & 0 \\
|
|
2 & 1 & 1 \\
|
|
-7 & 2 & -3
|
|
\end{bmatrix}
|
|
\\
|
|
|A - \lambda I| &= 0 \\
|
|
\begin{vmatrix}
|
|
2 - \lambda & 2 & 0 \\
|
|
2 & 1 - \lambda & 1 \\
|
|
-7 & 2 & -3 - \lambda
|
|
\end{vmatrix} &= 0
|
|
\end{align*}
|
|
|
|
Eigen values $\lambda = 1, 3, -4$ \\
|
|
|
|
1\textsuperscript{st} eigen value of $A^2 -2 A + I = 1^2 - 2(1) + 1 = 0$
|
|
|
|
2\textsuperscript{nd} eigen value of $A^2 -2 A + I = 3^2 - 2(3) + 1 = 4$
|
|
|
|
3\textsuperscript{rd} eigen value of $A^2 -2 A + I = {(-4)}^2 - 2(-4) + 1 = 25$
|
|
|
|
\section*{Question 6}
|
|
\begin{align*}
|
|
A &=
|
|
\begin{bmatrix}
|
|
7 & 3 \\
|
|
2 & 6
|
|
\end{bmatrix}
|
|
\\
|
|
| A - \lambda I| &= 0 \\
|
|
\begin{vmatrix}
|
|
7 - \lambda & 3 \\
|
|
2 & 6 - \lambda
|
|
\end{vmatrix} &= 0 \\
|
|
(7 - \lambda)(6 - \lambda) - 5 &= 0 \\
|
|
(\lambda - 4)(\lambda - 9) &= 0 \\
|
|
A^2 - 13 A + 36 &= 0 \\
|
|
A^2 &= 13 A - 36 \\
|
|
A^2\cdot A &= (13 A - 36)A \\
|
|
A^3 &= 13 A^2 - 36A \\
|
|
A^3 &=
|
|
\begin{bmatrix}
|
|
715 & 507 \\
|
|
338 & 546
|
|
\end{bmatrix}
|
|
-
|
|
\begin{bmatrix}
|
|
252 & 108 \\
|
|
72 & 216
|
|
\end{bmatrix} \\
|
|
A^3 &=
|
|
\begin{bmatrix}
|
|
463 & 399 \\
|
|
266 & 330
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
|
|
\section*{Question 7}
|
|
Suppose that $\lambda$ is a (possibly complex) eigen value of the real symmetric matrix $A$. Thus, there is a non-zero vector $V$, also with complex entries such that $AV = \lambda V$. By taking the complex conjugate of both sides and noting that $\overline{A} = A$ since $A$ has real entries, we get $\overline{AV} = \overline{\lambda V} \implies A\overline{V} = \overline{\lambda}\;\overline{V}$. Then using that $A^T = A$,
|
|
\begin{gather*}
|
|
\overline{V}^T AV = \overline{V}^t(AV) = \overline{V}(\lambda V) = \lambda( \overline{V}V ) \\
|
|
\overline{V}^T AV = {(A \overline{V})}^T V = {( \overline{\lambda}\;\overline{V} )}^T V = \overline{\lambda} ( \overline{V} V )
|
|
\end{gather*}
|
|
|
|
Since $V \ne 0$, we have $ \overline{V}V \ne 0$. Thus $\lambda = \overline{\lambda}$, which means $\lambda \in R$.
|
|
|
|
\section*{Question 8}
|
|
Quadratic Form $ax_1^2 + cx_2^2 - 2bx_1x_2$
|
|
\[
|
|
\begin{bmatrix}
|
|
a & -b \\
|
|
-b & c
|
|
\end{bmatrix}
|
|
\]
|
|
Convert it to diagonal matrix by applying
|
|
\begin{align*}
|
|
R_2 &\to R_2 + \frac{b}{a}R_1 \\
|
|
C_2 &\to C_2 + \frac{b}{a}C_1
|
|
\end{align*}
|
|
Now, we get
|
|
\[
|
|
\begin{bmatrix}
|
|
a & 0 \\
|
|
0 & c - \frac{b^2}{a}
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
Nature $\to$ positive definite $\to$ when $rank(r) = index(s)$ or when all eigen values are positive i.e. $a > 0$ \& $c - \frac{b^2}{a} > 0 \implies ac -b^2 > 0$. Hence proved.
|
|
|
|
\section*{Question 9}
|
|
\(
|
|
A =
|
|
\begin{bmatrix}
|
|
\lambda & 1 & 1 \\
|
|
1 & \lambda & -1 \\
|
|
1 & -1 & \lambda
|
|
\end{bmatrix}
|
|
\) is a symmetric matrix obtained when compared to Quadratic form $\lambda(x^2+ y^2 + z^2) + 2xy + 2zx -2yz$.
|
|
|
|
Now, convert $A$ into diagonal matrix by:
|
|
\begin{align*}
|
|
C_1 &\to C_1 + C_3 \\
|
|
C_1 &\to \frac{C_1}{\lambda + 1} \\
|
|
R_3 &\to R_3 - R_1 \\
|
|
C_3 &\to C_3 - C_1 \\
|
|
C_2 &\to C_2 -C_1 \\
|
|
C_3 &\to C_3 + \frac{C_2}{\lambda} \\
|
|
R_3 &\to R_3 + \frac{2R_2}{\lambda}
|
|
\end{align*}
|
|
|
|
we get,
|
|
|
|
\[
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 \\
|
|
0 & \lambda & 0 \\
|
|
0 & 0 & \lambda - \frac{2}{\lambda} - 1
|
|
\end{bmatrix}
|
|
\]
|
|
For definite positive nature, all Eigen values must be positive i.e. $\lambda > 0$, $\lambda - \frac{2}{\lambda} - 1 > 0$. Taking intersection of these two, we get $\lambda \in (2, \infty)$.
|
|
|
|
\section*{Question 10}
|
|
|
|
Multiplication of all the eigen values = determinant of the matrix. For singular matrix, determinant value = 0.
|
|
\begin{align*}
|
|
\text{Eigen Values} &= 2, 3, a \\
|
|
6a &= 0 \\
|
|
a &= 0
|
|
\end{align*}
|
|
|
|
\section*{Question 11}
|
|
|
|
Quadratic Form $x_2^2 + 2x_2^2 - 5x_3^2$
|
|
\[
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 \\
|
|
0 & 2 & 0 \\
|
|
0 & 0 & -5
|
|
\end{bmatrix}
|
|
\]
|
|
\begin{align*}
|
|
index(s) &= 2\;\text{(No of positive terms)} \\
|
|
rank(r) &= 3 \\
|
|
signature &= 2s -r = 4 - 3 = 1
|
|
\end{align*}
|
|
|
|
\section*{Question 12}
|
|
|
|
Quadratic form $ax^2 + 2bcy + cy^2$.
|
|
\[
|
|
\begin{bmatrix}
|
|
a & b \\
|
|
b & c
|
|
\end{bmatrix}
|
|
\]
|
|
Convert it into diagonal matrix by doing:
|
|
\begin{align*}
|
|
R_2 &\to R_2 - \left(\frac{b}{a}\right)R_1 \\
|
|
C_2 &\to C_2 - \left(\frac{b}{a}\right)C_1
|
|
\end{align*}
|
|
|
|
Finally, we get
|
|
\[
|
|
\begin{bmatrix}
|
|
a & 0 \\
|
|
0 & c - \frac{b^2}{a}
|
|
\end{bmatrix}
|
|
\]
|
|
For positive definite, $a>0$ and $ac -b^2 > 0$. \\
|
|
For negative definite, $a<0$ and $ac -b^2 > 0$. \\
|
|
Roots of the quadratic equation ($ax^2 + 2bx + c = 0$) are imaginary when $D < 0$. \\
|
|
${(2b)}^2 - 4ac = 4( b^2 - ac )$ is always negative
|
|
|
|
\section*{Question 13}
|
|
\begin{align*}
|
|
X_1 &=
|
|
\begin{bmatrix}
|
|
1 \\
|
|
2 \\
|
|
-3 \\
|
|
4
|
|
\end{bmatrix}
|
|
\\
|
|
X_2 &=
|
|
\begin{bmatrix}
|
|
1 \\
|
|
-5 \\
|
|
8 \\
|
|
-7
|
|
\end{bmatrix}
|
|
\\
|
|
X_3 &=
|
|
\begin{bmatrix}
|
|
1 \\
|
|
-5 \\
|
|
8 \\
|
|
-7
|
|
\end{bmatrix}
|
|
\\
|
|
\lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 &= 0 \\
|
|
\begin{bmatrix}
|
|
1 & 1 & 1 \\
|
|
2 & -5 & -5 \\
|
|
-3 & 8 & 8 \\
|
|
4 & -7 & -7
|
|
\end{bmatrix}
|
|
\begin{bmatrix}
|
|
\lambda_1 \\
|
|
\lambda_2 \\
|
|
\lambda_3
|
|
\end{bmatrix} &=
|
|
\begin{bmatrix}
|
|
0 \\
|
|
0 \\
|
|
0 \\
|
|
0
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
Applying the following tranformations
|
|
\begin{align*}
|
|
R_2 &\to R_2 - 2R_1 \\
|
|
R_2 &\to -\frac{R_2}{7} \\
|
|
R_3 &\to R_3 + R_4 \\
|
|
R_3 &\to R_3 - R_1 \\
|
|
R_1 &\to R_1 - R_2 \\
|
|
R_3 &\to R_3 - 4 R_1 \\
|
|
R_4 &\to -\frac{R_4}{7} \\
|
|
R_4 &\to R_4 - R_2
|
|
\end{align*}
|
|
we get
|
|
\begin{align*}
|
|
\begin{bmatrix}
|
|
1 & 2 & 0 \\
|
|
0 & 1 & 1 \\
|
|
0 & 0 & 0 \\
|
|
0 & 0 & 0
|
|
\end{bmatrix}
|
|
\begin{bmatrix}
|
|
\lambda_1 \\
|
|
\lambda_2 \\
|
|
\lambda_3
|
|
\end{bmatrix}
|
|
&=
|
|
\begin{bmatrix}
|
|
0 \\
|
|
0 \\
|
|
0 \\
|
|
0
|
|
\end{bmatrix} \\
|
|
\lambda_1 + 2\lambda_2 &= 0 \\
|
|
\lambda_2 + \lambda_3 &= 0
|
|
\therefore \\
|
|
\lambda_1 &= t \\
|
|
\lambda_2 &= -\frac{t}{2} \\
|
|
\lambda_3 &= \frac{t}{2}
|
|
\end{align*}
|
|
Putting the values, we get
|
|
|
|
\[
|
|
2 X_1 - X_2 + X_3 = 0
|
|
\]
|
|
|
|
\section*{Question 14}
|
|
|
|
\begin{align*}
|
|
(2 - \lambda)x_1 + (-2)x_2 + x_3 &= 0 \\
|
|
2x_1 - (\lambda + 3) x_2 + 2x_3 &= 0 \\
|
|
-x_1 + 2x_2 - \lambda x_3 &= 0
|
|
\end{align*}
|
|
|
|
\(
|
|
Rank(A) = Rank(\text{augemented matrix}) < 3
|
|
\) for non trivial solutions.
|
|
|
|
Check the determinant first, $\Delta = 0$
|
|
|
|
$\Delta = 0$ gets us $\lambda = 1, 3$
|
|
|
|
Now, for augemented matrix $[A:B]$, put $\lambda = 1, -3$ in \(
|
|
\begin{bmatrix}
|
|
2-\lambda & -2 & 1 & : & 0 \\
|
|
2 & -(\lambda + 3) & 2 & : & 0 \\
|
|
-1 & 2 & -\lambda & : & 0
|
|
\end{bmatrix}
|
|
\)
|
|
|
|
For $\lambda = 1$
|
|
\[
|
|
\begin{bmatrix}
|
|
1 & -2 & 1 & : & 0 \\
|
|
2 & -4 & 2 & : & 0 \\
|
|
-1 & 2 & -1 & : & 0
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
Doing transformations to form row echelon form, we get
|
|
\[
|
|
\begin{bmatrix}
|
|
1 & -2 & 1 & : & 0 \\
|
|
0 & 0 & 0 & : & 0 \\
|
|
0 & 0 & 0 & : & 0
|
|
\end{bmatrix}
|
|
\]
|
|
\begin{align*}
|
|
x_1 -2x_2 + x_3 &= 0 \\
|
|
if\;x_2 = k,\;x_3 = t, then\;x_1 &= 2k - t
|
|
\end{align*}
|
|
For $\lambda = -3$
|
|
\[
|
|
\begin{bmatrix}
|
|
5 & -2 & 1 & : & 0 \\
|
|
2 & 0 & 2 & : & 0 \\
|
|
-1 & 2 & 3 & : & 0
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
Doing transformations to form row echelon form, we get
|
|
\[
|
|
\begin{bmatrix}
|
|
5 & -2 & 1 & : & 0 \\
|
|
0 & \frac{4}{5} & \frac{8}{5} & : & 0 \\
|
|
0 & 0 & 0 & 0 & 0
|
|
\end{bmatrix}
|
|
\]
|
|
\begin{align*}
|
|
5x_1 - 2x_2 + x_3 &= 0 \\
|
|
\frac{4x_2}{5} + \frac{8x_3}{5} &= 0 \\
|
|
if\;x_3 = t, then \\
|
|
x_1 &= - t \\
|
|
x_2 &= -2t \\
|
|
x_3 &= t
|
|
\end{align*}
|
|
|
|
\section*{Question 15}
|
|
\subsection*{Part i}
|
|
Since $A + A^T = 0$, $A$ must either be skew symmetric. If A is skew symmetric, we know that the rank of an odd order skew symmetric matrix must be even. $\therefore Rank \leq 2020$
|
|
\subsection*{Part ii}
|
|
Inverse does not exist as $A$ is singular matrix.
|
|
\end{document}
|