324 lines
5.5 KiB
TeX
324 lines
5.5 KiB
TeX
\documentclass{article}
|
|
\usepackage{amsmath}
|
|
\usepackage{amssymb}
|
|
\begin{document}
|
|
\title{Mathematics Assignment 2 --- Matrices}
|
|
\author{Ahmad Saalim Lone, 2019BCSE017}
|
|
\date{05 May, 2020}
|
|
\maketitle
|
|
|
|
\section*{Question 1}
|
|
If
|
|
\(
|
|
A =
|
|
\begin{bmatrix}
|
|
3 & 3 & 4 \\
|
|
2 & -3 & 4 \\
|
|
0 & -1 & 1
|
|
\end{bmatrix}
|
|
\)
|
|
find $A^{-1}$ and verify that $A^{-1}A = I = AA^{-1}$.
|
|
\subsection*{Solution}
|
|
|
|
\begin{align*}
|
|
A &=
|
|
\begin{bmatrix}
|
|
3 & 3 & 4 \\
|
|
2 & -3 & 4 \\
|
|
0 & -1 & 1
|
|
\end{bmatrix} \\
|
|
A^{-1} &= \frac{adj(A)}{|A|} \\
|
|
|A| &= 3 \times (-3 + 4 ) - 3 \times 2 + 4 \times -2 \\
|
|
|A| &= -11 \\
|
|
\text{Cofactor matrix of A } &=
|
|
\begin{bmatrix}
|
|
1 & 2 & -2 \\
|
|
7 & 3 & -3 \\
|
|
24 & 4 & -15
|
|
\end{bmatrix} \\
|
|
adj(A) &=
|
|
\begin{bmatrix}
|
|
1 & 7 & 24 \\
|
|
2 & 3 & 4 \\
|
|
-2 & -3 & -15
|
|
\end{bmatrix} \\
|
|
A^{-1} &=
|
|
\begin{bmatrix}
|
|
\frac{1}{11} & \frac{2}{11} & -\frac{2}{11} \\[6pt]
|
|
\frac{7}{11} & \frac{3}{11} & -\frac{3}{11} \\[6pt]
|
|
\frac{24}{11} & \frac{4}{11} & -\frac{15}{11}
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
|
|
\begin{align*}
|
|
A \times A^{-1} &=
|
|
\begin{bmatrix}
|
|
\frac{1}{11} & \frac{2}{11} & -\frac{2}{11} \\[6pt]
|
|
\frac{7}{11} & \frac{3}{11} & -\frac{3}{11} \\[6pt]
|
|
\frac{24}{11} & \frac{4}{11} & -\frac{15}{11}
|
|
\end{bmatrix}
|
|
\begin{bmatrix}
|
|
3 & 3 & 4 \\
|
|
2 & -3 & 4 \\
|
|
0 & -1 & 1
|
|
\end{bmatrix} \\
|
|
&=
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 \\
|
|
0 & 1 & 0 \\
|
|
0 & 0 & 1
|
|
\end{bmatrix} \\
|
|
&= I
|
|
\end{align*}
|
|
|
|
Similarly, $A^{-1}\times A = I$
|
|
|
|
\section*{Question 2}
|
|
|
|
Find the inverse of
|
|
\(
|
|
A =\begin{bmatrix}
|
|
1 & 2 & 1 \\
|
|
3 & 2 & 3 \\
|
|
1 & 1 & 2
|
|
\end{bmatrix}
|
|
\) by applying E-transformation.
|
|
\subsection*{Solution}
|
|
\[
|
|
\begin{bmatrix}
|
|
1 & 2 & 1 \\
|
|
3 & 2 & 3 \\
|
|
1 & 1 & 2
|
|
\end{bmatrix}
|
|
=
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 \\
|
|
0 & 1 & 0 \\
|
|
0 & 0 & 1
|
|
\end{bmatrix}
|
|
A
|
|
\]
|
|
|
|
After applying the following transformations
|
|
\begin{align*}
|
|
C_3 &\to C_3 - C_1 \\
|
|
C_2 &\to \frac{C_1}{2} \\
|
|
R_1 &\to R_1 - R_2 \\
|
|
R_1 &\to \frac{R_1}{-2} \\
|
|
C_1 &\to C_1 - C_3 \\
|
|
R_2 &\to R_2 - 3R1 \\
|
|
R_2 &\to R_3 - \frac{R_2}{2}
|
|
\end{align*}
|
|
|
|
we get
|
|
|
|
\begin{align*}
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 \\
|
|
0 & 1 & 0 \\
|
|
0 & 0 & 1
|
|
\end{bmatrix}
|
|
&=
|
|
\begin{bmatrix}
|
|
-1 & \frac{1}{4} & \frac{1}{2} \\[6pt]
|
|
3 & -\frac{1}{4} & -\frac{1}{2} \\[6pt]
|
|
-\frac{5}{2} & \frac{1}{8} & \frac{3}{4}
|
|
\end{bmatrix}
|
|
\times A \\
|
|
\therefore A^{-1} &=
|
|
\begin{bmatrix}
|
|
-1 & \frac{1}{4} & \frac{1}{2} \\[6pt]
|
|
3 & -\frac{1}{4} & -\frac{1}{2} \\[6pt]
|
|
-\frac{5}{2} & \frac{1}{8} & \frac{3}{4}
|
|
\end{bmatrix}
|
|
\end{align*}
|
|
|
|
\section*{Question 3}
|
|
|
|
Reduce the matrix
|
|
\(
|
|
A =
|
|
\begin{bmatrix}
|
|
1 & -1 & 2 & -3 \\
|
|
4 & 1 & 0 & 2 \\
|
|
0 & 3 & 0 & 4 \\
|
|
0 & 1 & 0 & 2
|
|
\end{bmatrix}
|
|
\) to the normal form and hence determine its rank.
|
|
|
|
\subsection*{Solution}
|
|
|
|
To reduce the matrix we apply the following operations
|
|
|
|
\begin{align*}
|
|
R_1 &\to R_1 + R_3 \\
|
|
R_4 &\to R_4 - R_2 \\
|
|
R_2 &\to R_2 + R_4 \\
|
|
C_2 &\to C_2 - C_3 \\
|
|
C_4 &\to C_4 - C_2 \\
|
|
R_3 &\to R_3 - R_2 \\
|
|
C_2 &\rightleftharpoons C_3 \\
|
|
C_2 &\to \frac{C_2}{2} \\
|
|
R_3 &\to \frac{R_3}{2} \\
|
|
R_4 &\to \frac{R_4}{2} \\
|
|
C_4 &\to C_4 - C_2 \\
|
|
C_3 &\to C_3 - C_4 \\
|
|
C_4 &\rightleftharpoons C_2 \\
|
|
R_4 &\to R_4 - R_1 \\
|
|
R_4 &\to -R_4 \\
|
|
R_1 &\to R_1 - R_4
|
|
\end{align*}
|
|
|
|
At the end we arrive at
|
|
\[
|
|
\begin{bmatrix}
|
|
1 & 0 & 0 & 0 \\
|
|
0 & 1 & 0 & 0 \\
|
|
0 & 0 & 1 & 0 \\
|
|
0 & 0 & 0 & 1
|
|
\end{bmatrix}
|
|
\]
|
|
i.e. $[I_4]$
|
|
|
|
$rank = 4$
|
|
|
|
\section*{Question 4}
|
|
|
|
Reduce the matrix \(A =
|
|
\begin{bmatrix}
|
|
-2 & -1 & -3 & -1 \\
|
|
1 & 2 & 3 & -1 \\
|
|
1 & 0 & 1 & 1 \\
|
|
0 & 1 & 1 & -1
|
|
\end{bmatrix}
|
|
\) to Echelon form and find its rank.
|
|
\subsection*{Solution}
|
|
|
|
To convert it into Echelon form, we apply the following transformations.
|
|
|
|
\begin{align*}
|
|
R_1 &\to R_1 + R_2 \\
|
|
R_1 &\leftrightharpoons R_4 \\
|
|
R_2 &\to R_2 - R_3 \\
|
|
R_2 &\to \frac{R_2}{2} \\
|
|
R_3 &\to R_3 + R_4 \\
|
|
R_2 &\to R_2 - R_1 \\
|
|
R_3 &\to R_3 - R_1 \\
|
|
R_3 &\leftrightharpoons R_4 \\
|
|
R_2 &\leftrightharpoons R_3 \\
|
|
R_1 &\leftrightharpoons R_2 \\
|
|
R_1 &\to -R_1
|
|
\end{align*}
|
|
|
|
We get
|
|
\[
|
|
\begin{bmatrix}
|
|
1 & -1 & 0 & 2 \\
|
|
0 & 1 & 1 & -1 \\
|
|
0 & 0 & 0 & 0 \\
|
|
0 & 0 & 0 & 0
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
\[
|
|
rank = 2
|
|
\]
|
|
|
|
\section*{Question 5}
|
|
Solve
|
|
\begin{align*}
|
|
x + y + z &= 9 \\
|
|
2x + 5y + 7z &= 52 \\
|
|
2x + y - z &= 0
|
|
\end{align*}
|
|
\subsection*{Solution}
|
|
|
|
\begin{align*}
|
|
\Delta &=
|
|
\begin{vmatrix}
|
|
1 & 1 & 1 \\
|
|
2 & 5 & 7 \\
|
|
2 & 1 & -1
|
|
\end{vmatrix}
|
|
= -4
|
|
\\
|
|
\Delta_1 &=
|
|
\begin{vmatrix}
|
|
9 & 1 & 1 \\
|
|
52 & 5 & 7 \\
|
|
0 & 1 & -1
|
|
\end{vmatrix}
|
|
= -4
|
|
\\
|
|
\Delta_2 &=
|
|
\begin{vmatrix}
|
|
1 & 9 & 1 \\
|
|
2 & 52 & 7 \\
|
|
2 & 0 & -1
|
|
\end{vmatrix}
|
|
= -12
|
|
\\
|
|
\Delta_3 &=
|
|
\begin{vmatrix}
|
|
1 & 1 & 9 \\
|
|
2 & 5 & 52 \\
|
|
2 & 1 & 0
|
|
\end{vmatrix}
|
|
= -20
|
|
\\
|
|
x &= \frac{\Delta_1}{\Delta} = 1 \\
|
|
y &= \frac{\Delta_2}{\Delta} = 3 \\
|
|
z &= \frac{\Delta_3}{\Delta} = 5
|
|
\end{align*}
|
|
\section*{Question 6}
|
|
Test the consistency of:
|
|
|
|
\begin{align*}
|
|
3x - y + 2z &= 3 \\
|
|
2x + y + 3z &= 5 \\
|
|
x - 2y - z &= 1
|
|
\end{align*}
|
|
\subsection*{Solution}
|
|
\[
|
|
\text{Augemented matrix} =
|
|
\begin{bmatrix}
|
|
3 & -1 & 2 & : & 3 \\
|
|
2 & 1 & 3 & : & 5 \\
|
|
1 & -2 & -1 & : & 1
|
|
\end{bmatrix}
|
|
\]
|
|
\[
|
|
\Delta =
|
|
\begin{vmatrix}
|
|
3 & -1 & 2 \\
|
|
2 & 1 & 3 \\
|
|
1 & -2 & -1
|
|
\end{vmatrix}
|
|
= 10
|
|
\]
|
|
\[
|
|
\Delta \ne 0 \therefore \text{it is consistent with the unique solution}
|
|
\]
|
|
\section*{Question 7}
|
|
Solve the equations
|
|
\begin{align*}
|
|
x + 3y - 2z &= 0 \\
|
|
2x -y + 4z &= 0 \\
|
|
x - 11y + 14z &= 0
|
|
\end{align*}
|
|
\subsection*{Solution}
|
|
|
|
\begin{align*}
|
|
\Delta =\begin{vmatrix}
|
|
1 & 3 & -2 \\
|
|
2 & -1 & 4 \\
|
|
1 & -11 & 14
|
|
\end{vmatrix}
|
|
&= 0 \\
|
|
\Delta_1 = \Delta_2 = \Delta_3 &= 0 \\
|
|
\therefore \text{unique solution is } x = y = z &= 0
|
|
\end{align*}
|
|
|
|
|
|
\end{document}
|