Add maths assignment 2
This commit is contained in:
parent
cda6ceb41c
commit
5cf5340e27
|
@ -0,0 +1,323 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\title{Mathematics Assignment 2 --- Matrices}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{05 May, 2020}
|
||||
\maketitle
|
||||
|
||||
\section*{Question 1}
|
||||
If
|
||||
\(
|
||||
A =
|
||||
\begin{bmatrix}
|
||||
3 & 3 & 4 \\
|
||||
2 & -3 & 4 \\
|
||||
0 & -1 & 1
|
||||
\end{bmatrix}
|
||||
\)
|
||||
find $A^{-1}$ and verify that $A^{-1}A = I = AA^{-1}$.
|
||||
\subsection*{Solution}
|
||||
|
||||
\begin{align*}
|
||||
A &=
|
||||
\begin{bmatrix}
|
||||
3 & 3 & 4 \\
|
||||
2 & -3 & 4 \\
|
||||
0 & -1 & 1
|
||||
\end{bmatrix} \\
|
||||
A^{-1} &= \frac{adj(A)}{|A|} \\
|
||||
|A| &= 3 \times (-3 + 4 ) - 3 \times 2 + 4 \times -2 \\
|
||||
|A| &= -11 \\
|
||||
\text{Cofactor matrix of A } &=
|
||||
\begin{bmatrix}
|
||||
1 & 2 & -2 \\
|
||||
7 & 3 & -3 \\
|
||||
24 & 4 & -15
|
||||
\end{bmatrix} \\
|
||||
adj(A) &=
|
||||
\begin{bmatrix}
|
||||
1 & 7 & 24 \\
|
||||
2 & 3 & 4 \\
|
||||
-2 & -3 & -15
|
||||
\end{bmatrix} \\
|
||||
A^{-1} &=
|
||||
\begin{bmatrix}
|
||||
\frac{1}{11} & \frac{2}{11} & -\frac{2}{11} \\[6pt]
|
||||
\frac{7}{11} & \frac{3}{11} & -\frac{3}{11} \\[6pt]
|
||||
\frac{24}{11} & \frac{4}{11} & -\frac{15}{11}
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
A \times A^{-1} &=
|
||||
\begin{bmatrix}
|
||||
\frac{1}{11} & \frac{2}{11} & -\frac{2}{11} \\[6pt]
|
||||
\frac{7}{11} & \frac{3}{11} & -\frac{3}{11} \\[6pt]
|
||||
\frac{24}{11} & \frac{4}{11} & -\frac{15}{11}
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
3 & 3 & 4 \\
|
||||
2 & -3 & 4 \\
|
||||
0 & -1 & 1
|
||||
\end{bmatrix} \\
|
||||
&=
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & 1 & 0 \\
|
||||
0 & 0 & 1
|
||||
\end{bmatrix} \\
|
||||
&= I
|
||||
\end{align*}
|
||||
|
||||
Similarly, $A^{-1}\times A = I$
|
||||
|
||||
\section*{Question 2}
|
||||
|
||||
Find the inverse of
|
||||
\(
|
||||
A =\begin{bmatrix}
|
||||
1 & 2 & 1 \\
|
||||
3 & 2 & 3 \\
|
||||
1 & 1 & 2
|
||||
\end{bmatrix}
|
||||
\) by applying E-transformation.
|
||||
\subsection*{Solution}
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
1 & 2 & 1 \\
|
||||
3 & 2 & 3 \\
|
||||
1 & 1 & 2
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & 1 & 0 \\
|
||||
0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
A
|
||||
\]
|
||||
|
||||
After applying the following transformations
|
||||
\begin{align*}
|
||||
C_3 &\to C_3 - C_1 \\
|
||||
C_2 &\to \frac{C_1}{2} \\
|
||||
R_1 &\to R_1 - R_2 \\
|
||||
R_1 &\to \frac{R_1}{-2} \\
|
||||
C_1 &\to C_1 - C_3 \\
|
||||
R_2 &\to R_2 - 3R1 \\
|
||||
R_2 &\to R_3 - \frac{R_2}{2}
|
||||
\end{align*}
|
||||
|
||||
we get
|
||||
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & 1 & 0 \\
|
||||
0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
&=
|
||||
\begin{bmatrix}
|
||||
-1 & \frac{1}{4} & \frac{1}{2} \\[6pt]
|
||||
3 & -\frac{1}{4} & -\frac{1}{2} \\[6pt]
|
||||
-\frac{5}{2} & \frac{1}{8} & \frac{3}{4}
|
||||
\end{bmatrix}
|
||||
\times A \\
|
||||
\therefore A^{-1} &=
|
||||
\begin{bmatrix}
|
||||
-1 & \frac{1}{4} & \frac{1}{2} \\[6pt]
|
||||
3 & -\frac{1}{4} & -\frac{1}{2} \\[6pt]
|
||||
-\frac{5}{2} & \frac{1}{8} & \frac{3}{4}
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
|
||||
\section*{Question 3}
|
||||
|
||||
Reduce the matrix
|
||||
\(
|
||||
A =
|
||||
\begin{bmatrix}
|
||||
1 & -1 & 2 & -3 \\
|
||||
4 & 1 & 0 & 2 \\
|
||||
0 & 3 & 0 & 4 \\
|
||||
0 & 1 & 0 & 2
|
||||
\end{bmatrix}
|
||||
\) to the normal form and hence determine its rank.
|
||||
|
||||
\subsection*{Solution}
|
||||
|
||||
To reduce the matrix we apply the following operations
|
||||
|
||||
\begin{align*}
|
||||
R_1 &\to R_1 + R_3 \\
|
||||
R_4 &\to R_4 - R_2 \\
|
||||
R_2 &\to R_2 + R_4 \\
|
||||
C_2 &\to C_2 - C_3 \\
|
||||
C_4 &\to C_4 - C_2 \\
|
||||
R_3 &\to R_3 - R_2 \\
|
||||
C_2 &\rightleftharpoons C_3 \\
|
||||
C_2 &\to \frac{C_2}{2} \\
|
||||
R_3 &\to \frac{R_3}{2} \\
|
||||
R_4 &\to \frac{R_4}{2} \\
|
||||
C_4 &\to C_4 - C_2 \\
|
||||
C_3 &\to C_3 - C_4 \\
|
||||
C_4 &\rightleftharpoons C_2 \\
|
||||
R_4 &\to R_4 - R_1 \\
|
||||
R_4 &\to -R_4 \\
|
||||
R_1 &\to R_1 - R_4
|
||||
\end{align*}
|
||||
|
||||
At the end we arrive at
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\]
|
||||
i.e. $[I_4]$
|
||||
|
||||
$rank = 4$
|
||||
|
||||
\section*{Question 4}
|
||||
|
||||
Reduce the matrix \(A =
|
||||
\begin{bmatrix}
|
||||
-2 & -1 & -3 & -1 \\
|
||||
1 & 2 & 3 & -1 \\
|
||||
1 & 0 & 1 & 1 \\
|
||||
0 & 1 & 1 & -1
|
||||
\end{bmatrix}
|
||||
\) to Echelon form and find its rank.
|
||||
\subsection*{Solution}
|
||||
|
||||
To convert it into Echelon form, we apply the following transformations.
|
||||
|
||||
\begin{align*}
|
||||
R_1 &\to R_1 + R_2 + R_3 \\
|
||||
R_2 &\to R_2 - R_3 \\
|
||||
C_2 &\to C_2 + C_4 \\
|
||||
C_4 &\to C_4 + C_3 \\
|
||||
C_4 &\to C_4 - 2 C_1 \\
|
||||
C_3 &\to C_3 - C_2 \\
|
||||
C_2 &\to C_2 - C_1 \\
|
||||
R_2 &\to \frac{R_2}{2} \\
|
||||
R_1 &\leftrightharpoons R_4 \\
|
||||
C_4 &\leftrightharpoons C_1 \\
|
||||
R_4 &\to R_4 - R_2
|
||||
\end{align*}
|
||||
|
||||
We get
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1 \\
|
||||
0 & 0 & 0 & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
\[
|
||||
rank = 3
|
||||
\]
|
||||
|
||||
\section*{Question 5}
|
||||
Solve
|
||||
\begin{align*}
|
||||
x + y + z &= 9 \\
|
||||
2x + 5y + 7z &= 52 \\
|
||||
2x + y - z &= 0
|
||||
\end{align*}
|
||||
\subsection*{Solution}
|
||||
|
||||
\begin{align*}
|
||||
\Delta &=
|
||||
\begin{vmatrix}
|
||||
1 & 1 & 1 \\
|
||||
2 & 5 & 7 \\
|
||||
2 & 1 & -1
|
||||
\end{vmatrix}
|
||||
= -4
|
||||
\\
|
||||
\Delta_1 &=
|
||||
\begin{vmatrix}
|
||||
9 & 1 & 1 \\
|
||||
52 & 5 & 7 \\
|
||||
0 & 1 & -1
|
||||
\end{vmatrix}
|
||||
= -4
|
||||
\\
|
||||
\Delta_2 &=
|
||||
\begin{vmatrix}
|
||||
1 & 9 & 1 \\
|
||||
2 & 52 & 7 \\
|
||||
2 & 0 & -1
|
||||
\end{vmatrix}
|
||||
= -12
|
||||
\\
|
||||
\Delta_3 &=
|
||||
\begin{vmatrix}
|
||||
1 & 1 & 9 \\
|
||||
2 & 5 & 52 \\
|
||||
2 & 1 & 0
|
||||
\end{vmatrix}
|
||||
= -20
|
||||
\\
|
||||
x &= \frac{\Delta_1}{\Delta} = 1 \\
|
||||
y &= \frac{\Delta_2}{\Delta} = 3 \\
|
||||
z &= \frac{\Delta_3}{\Delta} = 5
|
||||
\end{align*}
|
||||
\section*{Question 6}
|
||||
Test the consistency of:
|
||||
|
||||
\begin{align*}
|
||||
3x - y + 2z &= 3 \\
|
||||
2x + y + 3z &= 5 \\
|
||||
x - 2y - z &= 1
|
||||
\end{align*}
|
||||
\subsection*{Solution}
|
||||
\[
|
||||
\text{Augemented matrix} =
|
||||
\begin{bmatrix}
|
||||
3 & -1 & 2 & : & 3 \\
|
||||
2 & 1 & 3 & : & 5 \\
|
||||
1 & -2 & -1 & : & 1
|
||||
\end{bmatrix}
|
||||
\]
|
||||
\[
|
||||
\Delta =
|
||||
\begin{vmatrix}
|
||||
3 & -1 & 2 \\
|
||||
2 & 1 & 3 \\
|
||||
1 & -2 & -1
|
||||
\end{vmatrix}
|
||||
= 10
|
||||
\]
|
||||
\[
|
||||
\Delta \ne 0 \therefore \text{it is consistent with the unique solution}
|
||||
\]
|
||||
\section*{Question 7}
|
||||
Solve the equations
|
||||
\begin{align*}
|
||||
x + 3y - 2z &= 0 \\
|
||||
2x -y + 4z &= 0 \\
|
||||
x - 11y + 14z &= 0
|
||||
\end{align*}
|
||||
\subsection*{Solution}
|
||||
|
||||
\begin{align*}
|
||||
\Delta =\begin{vmatrix}
|
||||
1 & 3 & -2 \\
|
||||
2 & -1 & 4 \\
|
||||
1 & -11 & 14
|
||||
\end{vmatrix}
|
||||
&= 0 \\
|
||||
\Delta_1 = \Delta_2 = \Delta_3 &= 0 \\
|
||||
\therefore \text{unique solution is } x = y = z &= 0
|
||||
\end{align*}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue