Add maths assignment 2
This commit is contained in:
		
							
								
								
									
										323
									
								
								maths/assignment-matrices/assign2.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										323
									
								
								maths/assignment-matrices/assign2.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,323 @@ | ||||
| \documentclass{article} | ||||
| \usepackage{amsmath} | ||||
| \usepackage{amssymb} | ||||
| \begin{document} | ||||
| \title{Mathematics Assignment 2 --- Matrices} | ||||
| \author{Ahmad Saalim Lone, 2019BCSE017} | ||||
| \date{05 May, 2020} | ||||
| \maketitle | ||||
|  | ||||
| \section*{Question 1} | ||||
| If | ||||
| \( | ||||
| A = | ||||
| \begin{bmatrix} | ||||
| 	3 & 3 & 4 \\ | ||||
| 	2 & -3 & 4 \\ | ||||
| 	0 & -1 & 1 | ||||
| \end{bmatrix} | ||||
| \) | ||||
| find $A^{-1}$ and verify that $A^{-1}A = I = AA^{-1}$. | ||||
| \subsection*{Solution} | ||||
|  | ||||
| \begin{align*} | ||||
| 	A &= | ||||
| 	\begin{bmatrix} | ||||
| 		3 & 3 & 4 \\ | ||||
| 		2 & -3 & 4 \\ | ||||
| 		0 & -1 & 1 | ||||
| 	\end{bmatrix} \\ | ||||
| 	A^{-1} &= \frac{adj(A)}{|A|} \\ | ||||
| 	|A| &= 3 \times (-3 + 4 ) - 3 \times 2 + 4 \times -2 \\ | ||||
| 	|A| &= -11 \\ | ||||
| 	\text{Cofactor matrix of A } &= | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 2 & -2 \\ | ||||
| 		7 & 3 & -3 \\ | ||||
| 		24 & 4 & -15 | ||||
| 	\end{bmatrix} \\ | ||||
| 	adj(A) &= | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 7 & 24 \\ | ||||
| 		2 & 3 & 4 \\ | ||||
| 		-2 & -3 & -15 | ||||
| 	\end{bmatrix} \\ | ||||
| 	A^{-1} &= | ||||
| 	\begin{bmatrix} | ||||
| 		\frac{1}{11} & \frac{2}{11} & -\frac{2}{11} \\[6pt] | ||||
| 		\frac{7}{11} & \frac{3}{11} & -\frac{3}{11} \\[6pt] | ||||
| 		\frac{24}{11} & \frac{4}{11} & -\frac{15}{11} | ||||
| 	\end{bmatrix} | ||||
| \end{align*} | ||||
|  | ||||
| \begin{align*} | ||||
| 	A \times A^{-1} &= | ||||
| 	\begin{bmatrix} | ||||
| 		\frac{1}{11} & \frac{2}{11} & -\frac{2}{11} \\[6pt] | ||||
| 		\frac{7}{11} & \frac{3}{11} & -\frac{3}{11} \\[6pt] | ||||
| 		\frac{24}{11} & \frac{4}{11} & -\frac{15}{11} | ||||
| 	\end{bmatrix} | ||||
| 	\begin{bmatrix} | ||||
| 		3 & 3 & 4 \\ | ||||
| 		2 & -3 & 4 \\ | ||||
| 		0 & -1 & 1 | ||||
| 	\end{bmatrix} \\ | ||||
| 					&= | ||||
| 					\begin{bmatrix} | ||||
| 						1 & 0 & 0 \\ | ||||
| 						0 & 1 & 0 \\ | ||||
| 						0 & 0 & 1 | ||||
| 					\end{bmatrix} \\ | ||||
| 					&= I | ||||
| \end{align*} | ||||
|  | ||||
| Similarly, $A^{-1}\times A = I$ | ||||
|  | ||||
| \section*{Question 2} | ||||
|  | ||||
| Find the inverse of | ||||
| \( | ||||
| A =\begin{bmatrix} | ||||
| 	1 & 2 & 1 \\ | ||||
| 	3 & 2 & 3 \\ | ||||
| 	1 & 1 & 2 | ||||
| \end{bmatrix} | ||||
| \) by applying E-transformation. | ||||
| \subsection*{Solution} | ||||
| \[ | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 2 & 1 \\ | ||||
| 		3 & 2 & 3 \\ | ||||
| 		1 & 1 & 2 | ||||
| 	\end{bmatrix} | ||||
| 	= | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 0 & 0 \\ | ||||
| 		0 & 1 & 0 \\ | ||||
| 		0 & 0 & 1 | ||||
| 	\end{bmatrix} | ||||
| 	A | ||||
| \] | ||||
|  | ||||
| After applying the following transformations | ||||
| \begin{align*} | ||||
| 	C_3 &\to C_3 - C_1 \\ | ||||
| 	C_2 &\to \frac{C_1}{2} \\ | ||||
| 	R_1 &\to R_1 - R_2 \\ | ||||
| 	R_1 &\to \frac{R_1}{-2} \\ | ||||
| 	C_1 &\to C_1 - C_3 \\ | ||||
| 	R_2 &\to R_2 - 3R1 \\ | ||||
| 	R_2 &\to R_3 - \frac{R_2}{2} | ||||
| \end{align*} | ||||
|  | ||||
| we get | ||||
|  | ||||
| \begin{align*} | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 0 & 0 \\ | ||||
| 		0 & 1 & 0 \\ | ||||
| 		0 & 0 & 1 | ||||
| 	\end{bmatrix} | ||||
| &= | ||||
| \begin{bmatrix} | ||||
| 	-1 & \frac{1}{4} & \frac{1}{2} \\[6pt] | ||||
| 	3 & -\frac{1}{4} & -\frac{1}{2} \\[6pt] | ||||
| 	-\frac{5}{2} & \frac{1}{8} & \frac{3}{4} | ||||
| \end{bmatrix} | ||||
| \times A \\ | ||||
| \therefore A^{-1} &= | ||||
| \begin{bmatrix} | ||||
| 	-1 & \frac{1}{4} & \frac{1}{2} \\[6pt] | ||||
| 	3 & -\frac{1}{4} & -\frac{1}{2} \\[6pt] | ||||
| 	-\frac{5}{2} & \frac{1}{8} & \frac{3}{4} | ||||
| \end{bmatrix} | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 3} | ||||
|  | ||||
| Reduce the matrix | ||||
| \( | ||||
| A = | ||||
| \begin{bmatrix} | ||||
| 	1 & -1 & 2 & -3 \\ | ||||
| 	4 & 1 & 0 & 2 \\ | ||||
| 	0 & 3 & 0 & 4 \\ | ||||
| 	0 & 1 & 0 & 2 | ||||
| \end{bmatrix} | ||||
| \) to the normal form and hence determine its rank. | ||||
|  | ||||
| \subsection*{Solution} | ||||
|  | ||||
| To reduce the matrix we apply the following operations | ||||
|  | ||||
| \begin{align*} | ||||
| 	R_1 &\to R_1 + R_3 \\ | ||||
| 	R_4 &\to R_4 - R_2 \\ | ||||
| 	R_2 &\to R_2 + R_4 \\ | ||||
| 	C_2 &\to C_2 - C_3 \\ | ||||
| 	C_4 &\to C_4 - C_2 \\ | ||||
| 	R_3 &\to  R_3 - R_2 \\ | ||||
| 	C_2 &\rightleftharpoons C_3 \\ | ||||
| 	C_2 &\to \frac{C_2}{2} \\ | ||||
| 	R_3 &\to \frac{R_3}{2} \\ | ||||
| 	R_4 &\to \frac{R_4}{2} \\ | ||||
| 	C_4 &\to C_4 - C_2 \\ | ||||
| 	C_3 &\to C_3 - C_4 \\ | ||||
| 	C_4 &\rightleftharpoons C_2 \\ | ||||
| 	R_4 &\to R_4 - R_1 \\ | ||||
| 	R_4 &\to -R_4 \\ | ||||
| 	R_1 &\to R_1 - R_4 | ||||
| \end{align*} | ||||
|  | ||||
| At the end we arrive at | ||||
| \[ | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 0 & 0 & 0 \\ | ||||
| 		0 & 1 & 0 & 0 \\ | ||||
| 		0 & 0 & 1 & 0 \\ | ||||
| 		0 & 0 & 0 & 1 | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
| i.e. $[I_4]$ | ||||
|  | ||||
| $rank = 4$ | ||||
|  | ||||
| \section*{Question 4} | ||||
|  | ||||
| Reduce the matrix \(A = | ||||
| \begin{bmatrix} | ||||
| 	-2 & -1 & -3 & -1 \\ | ||||
| 	1 & 2 & 3 & -1 \\ | ||||
| 	1 & 0 & 1 & 1 \\ | ||||
| 	0 & 1 & 1 & -1 | ||||
| \end{bmatrix} | ||||
| \) to Echelon form and find its rank. | ||||
| \subsection*{Solution} | ||||
|  | ||||
| To convert it into Echelon form, we apply the following transformations. | ||||
|  | ||||
| \begin{align*} | ||||
| 	R_1 &\to R_1 + R_2 + R_3 \\ | ||||
| 	R_2 &\to  R_2 - R_3 \\ | ||||
| 	C_2 &\to C_2 + C_4 \\ | ||||
| 	C_4 &\to C_4 + C_3 \\ | ||||
| 	C_4 &\to  C_4 - 2 C_1 \\ | ||||
| 	C_3 &\to C_3 - C_2 \\ | ||||
| 	C_2 &\to C_2 - C_1 \\ | ||||
| 	R_2 &\to \frac{R_2}{2} \\ | ||||
| 	R_1 &\leftrightharpoons R_4 \\ | ||||
| 	C_4 &\leftrightharpoons C_1 \\ | ||||
| 	R_4 &\to R_4 - R_2 | ||||
| \end{align*} | ||||
|  | ||||
| We get | ||||
| \[ | ||||
| 	\begin{bmatrix} | ||||
| 		0 & 1 & 0 & 0 \\ | ||||
| 		0 & 0 & 1 & 0 \\ | ||||
| 		0 & 0 & 0 & 1 \\ | ||||
| 		0 & 0 & 0 & 0 | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
|  | ||||
| \[ | ||||
| 	rank = 3 | ||||
| \] | ||||
|  | ||||
| \section*{Question 5} | ||||
| Solve | ||||
| \begin{align*} | ||||
| 	x + y + z &= 9 \\ | ||||
| 	2x + 5y + 7z &= 52 \\ | ||||
| 	2x + y - z &= 0 | ||||
| \end{align*} | ||||
| \subsection*{Solution} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\Delta &= | ||||
| 	\begin{vmatrix} | ||||
| 		1 & 1 & 1 \\ | ||||
| 		2 & 5 & 7 \\ | ||||
| 		2 & 1 & -1 | ||||
| 	\end{vmatrix} | ||||
| 	= -4 | ||||
| 	\\ | ||||
| 	\Delta_1 &= | ||||
| 	\begin{vmatrix} | ||||
| 		9 & 1 & 1 \\ | ||||
| 		52 & 5 & 7 \\ | ||||
| 		0 & 1 & -1 | ||||
| 	\end{vmatrix} | ||||
| 	= -4 | ||||
| 	\\ | ||||
| 	\Delta_2 &= | ||||
| 	\begin{vmatrix} | ||||
| 		1 & 9 & 1 \\ | ||||
| 		2 & 52 & 7 \\ | ||||
| 		2 & 0 & -1 | ||||
| 	\end{vmatrix} | ||||
| 	= -12 | ||||
| 	\\ | ||||
| 	\Delta_3 &= | ||||
| 	\begin{vmatrix} | ||||
| 		1 & 1 & 9 \\ | ||||
| 		2 & 5 & 52 \\ | ||||
| 		2 & 1 & 0 | ||||
| 	\end{vmatrix} | ||||
| 	= -20 | ||||
| 	\\ | ||||
| 	x &= \frac{\Delta_1}{\Delta} = 1 \\ | ||||
| 	y &= \frac{\Delta_2}{\Delta} = 3 \\ | ||||
| 	z &= \frac{\Delta_3}{\Delta} = 5 | ||||
| \end{align*} | ||||
| \section*{Question 6} | ||||
| Test the consistency of: | ||||
|  | ||||
| \begin{align*} | ||||
| 	3x - y + 2z &= 3 \\ | ||||
| 	2x + y + 3z &= 5 \\ | ||||
| 	x - 2y - z &= 1 | ||||
| \end{align*} | ||||
| \subsection*{Solution} | ||||
| \[ | ||||
| 	\text{Augemented matrix} = | ||||
| \begin{bmatrix} | ||||
| 3 & -1 & 2 & : & 3 \\ | ||||
| 2 & 1 & 3 & : & 5 \\ | ||||
| 1 & -2 & -1 & : & 1 | ||||
| \end{bmatrix} | ||||
| \] | ||||
| \[ | ||||
| \Delta = | ||||
| \begin{vmatrix} | ||||
| 3 & -1 & 2 \\ | ||||
| 2 & 1 & 3 \\ | ||||
| 1 & -2 & -1 | ||||
| \end{vmatrix} | ||||
| = 10 | ||||
| \] | ||||
| \[ | ||||
| 	\Delta \ne 0 \therefore \text{it is consistent with the unique solution} | ||||
| \] | ||||
| \section*{Question 7} | ||||
| Solve the equations | ||||
| \begin{align*} | ||||
| 	x + 3y - 2z &= 0 \\ | ||||
| 	2x -y + 4z &= 0 \\ | ||||
| 	x - 11y + 14z &= 0 | ||||
| \end{align*} | ||||
| \subsection*{Solution} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\Delta =\begin{vmatrix} | ||||
| 	1 & 3 & -2 \\ | ||||
| 	2 & -1 & 4 \\ | ||||
| 	1 & -11 & 14 | ||||
| 	\end{vmatrix} | ||||
| 	&= 0 \\ | ||||
| 	\Delta_1 = \Delta_2 = \Delta_3 &= 0 \\ | ||||
| 	\therefore \text{unique solution is } x = y = z &= 0 | ||||
| \end{align*} | ||||
|  | ||||
|  | ||||
| \end{document} | ||||
		Reference in New Issue
	
	Block a user