parent
9ff4a1562a
commit
7f7a385591
2 changed files with 200 additions and 0 deletions
@ -0,0 +1,83 @@ |
||||
\documentclass{article} |
||||
\usepackage{amsmath} |
||||
\usepackage{amssymb} |
||||
\begin{document} |
||||
\title{Assignment --- First Law of Thermodynamics} |
||||
\author{Ahmad Saalim Lone, 2019BCSE017} |
||||
\date{} |
||||
\maketitle |
||||
\section*{Question 1} |
||||
First law of thermodynamics suggests that $\sum Q = \sum W$. |
||||
\begin{align*} |
||||
Q_1 + Q_2 + Q_3 &= W_1 + W_2 \\ |
||||
75 - 40 + Q_3 &= -15 + 44 \\ |
||||
Q_3 &= -6 kJ |
||||
\end{align*} |
||||
i.e.\ from the system to the surroundings. |
||||
\section*{Question 2} |
||||
We know that, |
||||
\begin{align*} |
||||
Q &= \Delta E + W \\ |
||||
Q &= -50000 + \frac{-1000 \times 3600}{1000} kJ \\ |
||||
Q &= -8600 kJ \\ |
||||
Q &= -8.6 MJ |
||||
\end{align*} |
||||
\section*{Question 3} |
||||
There is no heat transfer, therefore |
||||
\begin{align*} |
||||
Q &= \Delta E + W \\ |
||||
W &= - \Delta E - \Delta V \\ |
||||
W &= \int_{1}^{0} C_v \cdot dT \\ |
||||
W &= -0.718 (T_2 - T_1) \\ |
||||
W &= -50.26 \frac{kJ}{kg} \\ |
||||
\text{Total Work} &= 2 \times (-50.26) = -100 kJ |
||||
\end{align*} |
||||
\section*{Question 4} |
||||
\begin{align*} |
||||
1000 &= a + b \times 0.2 \\ |
||||
200 &= a + b \times 1.2 \\ |
||||
b &= -800 \\ |
||||
a &= 1000 + 2 \times 800 = 1160 \\ |
||||
\therefore P &= 1160 - 800 V \\ |
||||
W &= \int_{V_1}^{V_2} P \cdot dV \\ |
||||
&= \int_{0.2}^{1.2} (1160 - 800V)dV \\ |
||||
&= 6000 kJ \\ |
||||
V_1 &= 1.5 \times 1000 \times \frac{0.2}{1.5} - 85 \\ |
||||
&= 215 \frac{kJ}{kg} \\ |
||||
V_2 &= 1.5 \times 200 \times \frac{1.2}{1.5} - 85 \\ |
||||
&= 155 \frac{kJ}{kg} \\ |
||||
\Delta V &= V_2 - V_1 \\ |
||||
&= 40 \frac{kJ}{kg} \\ |
||||
\Delta U &= m \Delta V = 60 kJ \\ |
||||
Q &= \Delta U + W \\ |
||||
&= 60 + 600 \\ |
||||
&= 660 kJ \\ |
||||
U &= 1.5 PV - 85 \frac{kJ}{kg} \\ |
||||
U &= 1.5 \left(\frac{1160 - 800 V}{1.5}\right)V - 85 \frac{kJ}{kg} \\ |
||||
&= 800 V^2 - 85 \frac{kJ}{kg} \\ |
||||
\frac{\delta U}{\delta V} &= 1160 - 1600 V \\ |
||||
\text{For maximum V,} \\ |
||||
V_1 \rightarrow \frac{\delta U}{\delta V} &= 0 \\ |
||||
V &= 0.725 \\ |
||||
u_{\max} = 335.5 \frac{kJ}{kg} \\ |
||||
\end{align*} |
||||
\begin{align*} |
||||
U_{\max} &= 1.5 \times u_{\max} = 503.25 kJ \\ |
||||
\end{align*} |
||||
\section*{Question 5} |
||||
\subsection*{Part a} |
||||
\begin{align*} |
||||
Q &= \int_{273}^{373} C_p \cdot dT \\ |
||||
t &= T - 273 K \\ |
||||
\therefore t + 100 &= T - 173 \\ |
||||
Q &= \int_{273}^{373} \left(2.093 + \frac{41.87}{T - 173}\right) \cdot dT \\ |
||||
Q &= 238.32 J |
||||
\end{align*} |
||||
\subsection*{Part b} |
||||
\begin{align*} |
||||
Q &= \Delta E + \int p\cdot dV \\ |
||||
\Delta E &= Q - p(V_2 - V_1) \\ |
||||
\Delta E &= 238.32 - 101.325 (0.0024 - 0.002) \times 1000 J \\ |
||||
\Delta E &= 197.79J |
||||
\end{align*} |
||||
\end{document} |
@ -0,0 +1,117 @@ |
||||
\documentclass{article} |
||||
\usepackage{amsmath} |
||||
\usepackage{amssymb} |
||||
\begin{document} |
||||
\title{Assignment --- Second Law of Thermodynamics} |
||||
\author{Ahmad Saalim Lone, 2019BCSE017} |
||||
\date{} |
||||
\maketitle |
||||
\section*{Question 1} |
||||
We know that the net power output is the difference between the heat input and the heat rejected (cyclic device). |
||||
\begin{align*} |
||||
W_{net,out} &= Q_H + Q_L \\ |
||||
W_{out} &= 90 - 55 = 35 MW |
||||
\end{align*} |
||||
The thermal efficiency is the ratio of net work output and the heat output. |
||||
\[ |
||||
\eta_{thermal} = W_{out}\frac{W_{out}}{Q_H} = \frac{35}{90} = 0.3889 |
||||
\] |
||||
\section*{Question 2} |
||||
\begin{align*} |
||||
\text{efficiency} = 1 - \frac{T_1}{T_2} &= \frac{\text{work input}}{\text{work output}} \;\;\text{(must)}\\ |
||||
1 - \frac{300}{1000} &\implies \frac{6}{1} \;\;\text{(claimed)} \\ |
||||
0.7 &> 0.6 \\ |
||||
\text{output} &> \text{claimed $\implies$ good} |
||||
\end{align*} |
||||
$\therefore$ we can agree to this claim. |
||||
\section*{Question 3} |
||||
\[ |
||||
\eta = \frac{\text{output}}{\text{input}} = \frac{0.65}{0.65 + 0.4} = 0.619 = 61.9% |
||||
\] |
||||
now, |
||||
\begin{align*} |
||||
\eta &= 1 - \frac{T_2}{T_1} \\ |
||||
T_1 &= \frac{T_2}{1 - \eta} \\ |
||||
T_1 &= 787.5 K |
||||
\end{align*} |
||||
$\therefore$, the temperature at which energy is absorbed is 787.5 K |
||||
\section*{Question 4} |
||||
\begin{align*} |
||||
\eta &= 1 - \frac{T_1}{T_2} \\ |
||||
\end{align*} |
||||
where, |
||||
\begin{align*} |
||||
\eta &= 0.6 \\ |
||||
T_2 &= 800 K \\ |
||||
T_1 &= T_{sink} \\ |
||||
T_{sink} &= (1 - \eta)T_2 \\ |
||||
&= 324K |
||||
\end{align*} |
||||
Also, |
||||
\begin{align*} |
||||
\eta &= \frac{Q_1 - Q_{\text{rejected}}}{Q_1} \\ |
||||
Q_{\text{rejected}} &= Q_1 (1 - \eta) \\ |
||||
&= 400(1 - 0.6) \\ |
||||
&= 160 kJ |
||||
\end{align*} |
||||
\section*{Question 5} |
||||
Max COP will be achieved only in a Carnot refrigerator. |
||||
\[ |
||||
{(COP_{\max})}_{R} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2} = \frac{-20 + 273}{57} = 4.438 |
||||
\] |
||||
Minimum Power $\to$ Max COP\@. We know that $P = \frac{Q}{\eta}$. |
||||
\[ |
||||
P = \frac{3 \times 57}{253} = 0.657 W |
||||
\] |
||||
\section*{Question 6} |
||||
Max COP will be achieved only in a Carnot refrigerator. |
||||
\begin{align*} |
||||
{(COP)}_{\text{Carnot refrigerator}} &= \frac{T_{low}}{T_{high} - T_{low}} = 1.37 \times 10^{-2} \\ |
||||
{(COP)}_{\text{refrigerator}} &= \frac{Q_L}{W} = 1.37 \times 10^{-2} \\ |
||||
Q_L &= 83.3 \\ |
||||
\end{align*} |
||||
\section*{Question 7} |
||||
For process $1-2$ |
||||
\begin{align*} |
||||
Q_{1-2} &= U_2 - U_1 + W_{1-2} \\ |
||||
-732 &= U_2 - U_1 - 2.8 \times 3600 \\ |
||||
U_2 - U_1 &= 9348kJ |
||||
\end{align*} |
||||
For process $2-1$ |
||||
\begin{align*} |
||||
Q_{2-1} &= U_1 - U_2 + W_{2-1} \\ |
||||
-732 &= -9348 - 2.8 \times 3600 \\ |
||||
Q_{2-1} &= -708 kJ |
||||
\end{align*} |
||||
Now, |
||||
\[ |
||||
Q_{2-1} = U_1 - U_2 + W_{2-1} |
||||
\] |
||||
For maximum work, $Q_{2-1} = 0$. |
||||
\[ |
||||
\therefore {(W_{2-1})}_{\max} = U_2 - U_1 = 9348kJ |
||||
\] |
||||
\section*{Question 8} |
||||
\begin{align*} |
||||
{(COP)}_R &= \frac{268}{298 - 268} = 8.933 \\ |
||||
{(COP)}_R &= \frac{5}{W} \\ |
||||
W &= 0.56KW |
||||
\end{align*} |
||||
\section*{Question 9} |
||||
\begin{align*} |
||||
\eta &= 1 - \frac{273+60}{273+671} = 0.64725 \\ |
||||
\eta &= 0.3236 \\ |
||||
\implies 1 - 0.3236 &= 0.6764 \\ |
||||
\text{Ideal COP} &= \frac{305.2}{305.2 - 266.4} = 7.866 \\ |
||||
\text{Actual COP} &= 3.923 = \frac{Q_3}{W} \\ |
||||
if \;Q_3 &= 1kJ \\ |
||||
\therefore W &= \frac{Q_3}{3.923} = 0.2549kJ \\ |
||||
W &= Q_{\text{output}} - Q_{\text{input}} = \frac{1}{3.923} Q_1 - 0.6764Q_1 = 0.2549 \\ |
||||
Q_{\text{out}} &= \frac{0.2549}{1 - 0.6764} = 0.7877 kJ \\ |
||||
\end{align*} |
||||
\section*{Question 10} |
||||
\begin{align*} |
||||
\frac{10}{W} &= \frac{293}{293-273} \\ |
||||
or\;W &= 683 W |
||||
\end{align*} |
||||
\end{document} |
Loading…
Reference in new issue