Add assignment 2 engg_mech
This commit is contained in:
parent
d2452e9f5c
commit
9ff4a1562a
|
@ -0,0 +1,135 @@
|
||||||
|
\documentclass{article}
|
||||||
|
\usepackage{amsmath}
|
||||||
|
\usepackage{amssymb}
|
||||||
|
\usepackage{siunitx}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{wrapfig}
|
||||||
|
\graphicspath{{./images/}}
|
||||||
|
\begin{document}
|
||||||
|
\title{Engineering Mechanics}
|
||||||
|
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||||
|
\date{17 May, 2020}
|
||||||
|
\maketitle
|
||||||
|
\section*{Question 1}
|
||||||
|
\subsection*{Question 1.a}
|
||||||
|
We shall balance the torque about $C$. $\angle ABC = \theta$, Tension in cable $=T$.
|
||||||
|
\begin{align*}
|
||||||
|
240 (0.4) + 240 (0.8) &= T\sin{\theta} \times 0.18 \\
|
||||||
|
T\sin{\theta} &= 1600 \\
|
||||||
|
T \frac{0.24}{0.3} &= 1600 \\
|
||||||
|
T &= 2000
|
||||||
|
\end{align*}
|
||||||
|
\subsection*{Question 1.b}
|
||||||
|
On making FBD of bracket BCD.\@
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
x-component &= N_x = T\sin{\theta} = 1600 \\
|
||||||
|
y-component &= N_y = T\cos{\theta} + 240 +240 = 1680
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\section*{Question 2}
|
||||||
|
\subsection*{Question 2.a}
|
||||||
|
We shall balance the torque about C
|
||||||
|
\begin{align*}
|
||||||
|
P \times 7.5 &= T \times 5 \\
|
||||||
|
T &= 150 lb
|
||||||
|
\end{align*}
|
||||||
|
\subsection*{Question 2.b}
|
||||||
|
\begin{align*}
|
||||||
|
N_x \text{(reaction at C along x-axis)} &= - (P + T\sin{\ang{37}}) = -190 lb \\
|
||||||
|
N_y \text{(reaction at C along y-axis)} &= - T \cos{\ang{37}} = -120 lb
|
||||||
|
\end{align*}
|
||||||
|
\section*{Question 3}
|
||||||
|
\subsection*{Question 3.a}
|
||||||
|
\[
|
||||||
|
\alpha = 0
|
||||||
|
\]
|
||||||
|
Balance torque about B
|
||||||
|
\begin{align*}
|
||||||
|
N_a \times 20 &= 75 \times 10 \\
|
||||||
|
N_a &= 37.5 lb
|
||||||
|
\end{align*}
|
||||||
|
Balance torque about A
|
||||||
|
\begin{align*}
|
||||||
|
N_b \times 20 &= 75 \times 10 \\
|
||||||
|
N_b &= 37.5 lb
|
||||||
|
\end{align*}
|
||||||
|
\subsection*{Question 3.b}
|
||||||
|
\[
|
||||||
|
\alpha = \ang{90}
|
||||||
|
\]
|
||||||
|
Balance torque about A
|
||||||
|
\begin{align*}
|
||||||
|
N_b \times 20 &= 75 \times 10 \\
|
||||||
|
N_b &= 37.5 lb
|
||||||
|
\end{align*}
|
||||||
|
Balance torque about B
|
||||||
|
\begin{align*}
|
||||||
|
N_a \times 12 &= 75 \times 10 \\
|
||||||
|
N_a &= 62.5 lb
|
||||||
|
\end{align*}
|
||||||
|
\subsection*{Question 3.c}
|
||||||
|
\[
|
||||||
|
\alpha = \ang{30}
|
||||||
|
\]
|
||||||
|
Balance torque about the mid point of horizontal rod
|
||||||
|
\begin{align*}
|
||||||
|
N_a \times 10 &= {(N_b)}_y \times 10 \\
|
||||||
|
N_a &= {(N_b)}_y
|
||||||
|
\end{align*}
|
||||||
|
Balance torque about B
|
||||||
|
\begin{align*}
|
||||||
|
N_a \times 20 &= 75 \times 10 \\
|
||||||
|
N_a &= 37.5 lb \\\\
|
||||||
|
N_a &= N_b \cos{\ang{30}} \\
|
||||||
|
N_b &= 43.30
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\section*{Question 4}
|
||||||
|
\subsection*{Question 4.a}
|
||||||
|
Balance torque about C
|
||||||
|
\begin{align*}
|
||||||
|
120 \times 0.28 &= T \times \frac{150}{250} \times 0.2 + T \times \frac{150}{390} \times 0.36 \\
|
||||||
|
33.6 &= T \times 0.26 \\
|
||||||
|
T &= 129.2 N \approx 130 N
|
||||||
|
\end{align*}
|
||||||
|
\subsection*{Question 4.b}
|
||||||
|
\begin{align*}
|
||||||
|
{(N_c)}_x &= T \times \frac{200}{250} + T \times \frac{360}{390} \\
|
||||||
|
{(N_c)}_x &= 223 N \\
|
||||||
|
{(N_c)}_y &= 120 - \left(T \times \frac{150}{250} + T \times \frac{150}{390}\right) \\
|
||||||
|
{(N_c)}_y &= -7.21 N \\
|
||||||
|
N_c &= \sqrt{223^2 + 7.21^2} N \\
|
||||||
|
N_c &= 224 N
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\section*{Question 5}
|
||||||
|
Balance torque about B
|
||||||
|
\begin{align*}
|
||||||
|
{(N_a)}_y \times 8 &= 4000 \times 2 \\
|
||||||
|
{(N_a)}_y &= 1000 N
|
||||||
|
\end{align*}
|
||||||
|
FBD of Rod
|
||||||
|
\begin{align*}
|
||||||
|
4000 &= {(N_A)}_y + {(N_B)}_y \\
|
||||||
|
4000 &= 1000 + {(N_B)}_y \\
|
||||||
|
{(N_B)}_y &= 3000 \\\\
|
||||||
|
{(N_B)}_y &= N_b \sin{\ang{60}} \\
|
||||||
|
N_B &= 3465 \\
|
||||||
|
{(N_A)}_x &= {(N_B)}_x \\
|
||||||
|
{(N_A)}_x &= N_B \sin{\ang{30}} \\
|
||||||
|
{(N_A)}_x &= 1732
|
||||||
|
\end{align*}
|
||||||
|
\section*{Question 6}
|
||||||
|
First we have to calculate reaction at A
|
||||||
|
\begin{align*}
|
||||||
|
\sum F_x &= 0 \\
|
||||||
|
4000 \cos{\ang{30}} &= A_x \\
|
||||||
|
A_x &= 3464 N
|
||||||
|
\end{align*}
|
||||||
|
\begin{align*}
|
||||||
|
\sum F_y &= 0 \\
|
||||||
|
6000 + 4000 \cos{\ang{30}} &= A_y \\
|
||||||
|
A_y &= 8000 N
|
||||||
|
\end{align*}
|
||||||
|
\end{document}
|
Loading…
Reference in New Issue