Solve Q 3, 4, 5, 6
This commit is contained in:
		| @@ -1,6 +1,8 @@ | ||||
| \documentclass{article} | ||||
| % Import for matrices | ||||
| \usepackage{amsmath} | ||||
| % Import for therefore symbol | ||||
| \usepackage{amssymb} | ||||
| \begin{document} | ||||
| \title{Mathematics Assignment --- Matrices} | ||||
| \author{Ahmad Saalim Lone, 2019BCSE017} | ||||
| @@ -50,6 +52,8 @@ | ||||
| 		1 & -4 & 11 | ||||
| 	\end{bmatrix} | ||||
| \end{equation} | ||||
|  | ||||
|  | ||||
| \section{Question 2} | ||||
| \begin{equation} | ||||
| 	A = | ||||
| @@ -81,9 +85,9 @@ | ||||
| \begin{equation} | ||||
| 	AB = | ||||
| 	\begin{bmatrix} | ||||
| 		1 * 1 + 2 * 2 + 3 * 5 & 1 * 0 + 2 * 1 + 3 * 2 & 1 * 2 + 2 * 2 + 3 * 3 \\ | ||||
| 		4 * 1 + 5 * 2 + 6 * 5 & 4 * 0 + 5 * 1 + 6 * 2 & 4 * 2 + 5 * 2 + 6 * 3 \\ | ||||
| 		7 * 1 + 8 * 2 + 9 * 5 & 7 * 0 + 8 * 1 + 9 * 2 & 7 * 2 + 8 * 2 + 9 * 3 | ||||
| 		1 \times 1 + 2 \times 2 + 3 \times 5 & 1 \times 0 + 2 \times 1 + 3 \times 2 & 1 \times 2 + 2 \times 2 + 3 \times 3 \\ | ||||
| 		4 \times 1 + 5 \times 2 + 6 \times 5 & 4 \times 0 + 5 \times 1 + 6 \times 2 & 4 \times 2 + 5 \times 2 + 6 \times 3 \\ | ||||
| 		7 \times 1 + 8 \times 2 + 9 \times 5 & 7 \times 0 + 8 \times 1 + 9 \times 2 & 7 \times 2 + 8 \times 2 + 9 \times 3 | ||||
| 	\end{bmatrix} | ||||
| \end{equation} | ||||
| \begin{equation} | ||||
| @@ -94,4 +98,104 @@ | ||||
| 		68 & 26 & 57 | ||||
| 	\end{bmatrix} | ||||
| \end{equation} | ||||
|  | ||||
|  | ||||
| \section{Question 3} | ||||
| If \( | ||||
| A = | ||||
| \begin{bmatrix} | ||||
| 	1 & -2 & -3 \\ | ||||
| 	-4 & 2 & 5 | ||||
| \end{bmatrix} | ||||
| B = | ||||
| \begin{bmatrix} | ||||
| 	2 & 3 \\ | ||||
| 	4 & 5 \\ | ||||
| 	2 & 1 | ||||
| \end{bmatrix} | ||||
| \), show that \(AB \ne BA\). | ||||
|  | ||||
| Order of $A$ = $2\times3$ | ||||
|  | ||||
| Order of $B$ = $3\times2$ | ||||
|  | ||||
| Order of $AB$ = $rows \; of \; A \times columns \; of \; B$ = $2\times2$ | ||||
|  | ||||
| Order of $BA$ = $rows \; of \; B \times columns \; of \; A$ = $3\times3$ | ||||
|  | ||||
| Matrices of different order can't be equal. | ||||
|  | ||||
| $\therefore AB \ne BA$ | ||||
|  | ||||
| \section{Question 4} | ||||
|  | ||||
| Show that \( | ||||
| A = | ||||
| \begin{bmatrix} | ||||
| 	3 & 1 + 2i \\ | ||||
| 	1-2i & 2 | ||||
| \end{bmatrix} | ||||
| \) is a hermitian. | ||||
|  | ||||
| For a matrix to be hermitian, each element $a_{i,j}$ needs to be the complex | ||||
| conjugate of the element at $a_{j,i}$. In given matrix, we have | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item \(a_{11} = 3\) | ||||
| 	\item \(a_{12} = 1 + 2i\) | ||||
| 	\item \(a_{21} = 1 - 2i\) | ||||
| 	\item \(a_{22} = 2\) | ||||
| \end{itemize} | ||||
|  | ||||
| The conjugates are as follows | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item \(\overline{a_{11}} = 3\) | ||||
| 	\item \(\overline{a_{12}} = 1 - 2i\) | ||||
| 	\item \(\overline{a_{21}} = 1 + 2i\) | ||||
| 	\item \(\overline{a_{22}} = 2\) | ||||
| \end{itemize} | ||||
|  | ||||
| As we can see, \(\overline{a_{11}} = a_{11}\), \(\overline{a_{12}} = a_{21}\), \(\overline{a_{21}} = a_{12}\) and \(\overline{a_{22}} = a_{22}\). | ||||
|  | ||||
| $\therefore A$ is hermitian. | ||||
|  | ||||
| \section{Question 5} | ||||
|  | ||||
| If \( | ||||
| A = | ||||
| \begin{bmatrix} | ||||
| 	5 & 1 + i \\ | ||||
| 	-1 + i & 4 | ||||
| \end{bmatrix} | ||||
| \), show that ${(A^{\theta})}^{\theta}$ | ||||
|  | ||||
| \[ | ||||
| 	A = | ||||
| 	\begin{bmatrix} | ||||
| 		5 & 1 + i \\ | ||||
| 		-1 + i & 4 | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
|  | ||||
| \[ | ||||
| 	\overline{A^{\theta}} = | ||||
| 	\begin{bmatrix} | ||||
| 		5 &  - 1 - i \\ | ||||
| 		1 + i & 4 | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
|  | ||||
|  | ||||
| \[ | ||||
| 	{(A^{\theta})}^{\theta} = | ||||
| 	\begin{bmatrix} | ||||
| 		5 & 1 + i \\ | ||||
| 		-1 + i & 4 | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
|  | ||||
| \[ | ||||
| 	\therefore {(A^{\theta})}^{\theta} = A | ||||
| \] | ||||
| \end{document} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user