Solve Q 3, 4, 5, 6
This commit is contained in:
parent
153322b4dc
commit
b2abb2d95a
|
@ -1,6 +1,8 @@
|
||||||
\documentclass{article}
|
\documentclass{article}
|
||||||
% Import for matrices
|
% Import for matrices
|
||||||
\usepackage{amsmath}
|
\usepackage{amsmath}
|
||||||
|
% Import for therefore symbol
|
||||||
|
\usepackage{amssymb}
|
||||||
\begin{document}
|
\begin{document}
|
||||||
\title{Mathematics Assignment --- Matrices}
|
\title{Mathematics Assignment --- Matrices}
|
||||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||||
|
@ -50,6 +52,8 @@
|
||||||
1 & -4 & 11
|
1 & -4 & 11
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
\section{Question 2}
|
\section{Question 2}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
A =
|
A =
|
||||||
|
@ -81,9 +85,9 @@
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
AB =
|
AB =
|
||||||
\begin{bmatrix}
|
\begin{bmatrix}
|
||||||
1 * 1 + 2 * 2 + 3 * 5 & 1 * 0 + 2 * 1 + 3 * 2 & 1 * 2 + 2 * 2 + 3 * 3 \\
|
1 \times 1 + 2 \times 2 + 3 \times 5 & 1 \times 0 + 2 \times 1 + 3 \times 2 & 1 \times 2 + 2 \times 2 + 3 \times 3 \\
|
||||||
4 * 1 + 5 * 2 + 6 * 5 & 4 * 0 + 5 * 1 + 6 * 2 & 4 * 2 + 5 * 2 + 6 * 3 \\
|
4 \times 1 + 5 \times 2 + 6 \times 5 & 4 \times 0 + 5 \times 1 + 6 \times 2 & 4 \times 2 + 5 \times 2 + 6 \times 3 \\
|
||||||
7 * 1 + 8 * 2 + 9 * 5 & 7 * 0 + 8 * 1 + 9 * 2 & 7 * 2 + 8 * 2 + 9 * 3
|
7 \times 1 + 8 \times 2 + 9 \times 5 & 7 \times 0 + 8 \times 1 + 9 \times 2 & 7 \times 2 + 8 \times 2 + 9 \times 3
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|
@ -94,4 +98,104 @@
|
||||||
68 & 26 & 57
|
68 & 26 & 57
|
||||||
\end{bmatrix}
|
\end{bmatrix}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Question 3}
|
||||||
|
If \(
|
||||||
|
A =
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & -2 & -3 \\
|
||||||
|
-4 & 2 & 5
|
||||||
|
\end{bmatrix}
|
||||||
|
B =
|
||||||
|
\begin{bmatrix}
|
||||||
|
2 & 3 \\
|
||||||
|
4 & 5 \\
|
||||||
|
2 & 1
|
||||||
|
\end{bmatrix}
|
||||||
|
\), show that \(AB \ne BA\).
|
||||||
|
|
||||||
|
Order of $A$ = $2\times3$
|
||||||
|
|
||||||
|
Order of $B$ = $3\times2$
|
||||||
|
|
||||||
|
Order of $AB$ = $rows \; of \; A \times columns \; of \; B$ = $2\times2$
|
||||||
|
|
||||||
|
Order of $BA$ = $rows \; of \; B \times columns \; of \; A$ = $3\times3$
|
||||||
|
|
||||||
|
Matrices of different order can't be equal.
|
||||||
|
|
||||||
|
$\therefore AB \ne BA$
|
||||||
|
|
||||||
|
\section{Question 4}
|
||||||
|
|
||||||
|
Show that \(
|
||||||
|
A =
|
||||||
|
\begin{bmatrix}
|
||||||
|
3 & 1 + 2i \\
|
||||||
|
1-2i & 2
|
||||||
|
\end{bmatrix}
|
||||||
|
\) is a hermitian.
|
||||||
|
|
||||||
|
For a matrix to be hermitian, each element $a_{i,j}$ needs to be the complex
|
||||||
|
conjugate of the element at $a_{j,i}$. In given matrix, we have
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item \(a_{11} = 3\)
|
||||||
|
\item \(a_{12} = 1 + 2i\)
|
||||||
|
\item \(a_{21} = 1 - 2i\)
|
||||||
|
\item \(a_{22} = 2\)
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
The conjugates are as follows
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item \(\overline{a_{11}} = 3\)
|
||||||
|
\item \(\overline{a_{12}} = 1 - 2i\)
|
||||||
|
\item \(\overline{a_{21}} = 1 + 2i\)
|
||||||
|
\item \(\overline{a_{22}} = 2\)
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
As we can see, \(\overline{a_{11}} = a_{11}\), \(\overline{a_{12}} = a_{21}\), \(\overline{a_{21}} = a_{12}\) and \(\overline{a_{22}} = a_{22}\).
|
||||||
|
|
||||||
|
$\therefore A$ is hermitian.
|
||||||
|
|
||||||
|
\section{Question 5}
|
||||||
|
|
||||||
|
If \(
|
||||||
|
A =
|
||||||
|
\begin{bmatrix}
|
||||||
|
5 & 1 + i \\
|
||||||
|
-1 + i & 4
|
||||||
|
\end{bmatrix}
|
||||||
|
\), show that ${(A^{\theta})}^{\theta}$
|
||||||
|
|
||||||
|
\[
|
||||||
|
A =
|
||||||
|
\begin{bmatrix}
|
||||||
|
5 & 1 + i \\
|
||||||
|
-1 + i & 4
|
||||||
|
\end{bmatrix}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\[
|
||||||
|
\overline{A^{\theta}} =
|
||||||
|
\begin{bmatrix}
|
||||||
|
5 & - 1 - i \\
|
||||||
|
1 + i & 4
|
||||||
|
\end{bmatrix}
|
||||||
|
\]
|
||||||
|
|
||||||
|
|
||||||
|
\[
|
||||||
|
{(A^{\theta})}^{\theta} =
|
||||||
|
\begin{bmatrix}
|
||||||
|
5 & 1 + i \\
|
||||||
|
-1 + i & 4
|
||||||
|
\end{bmatrix}
|
||||||
|
\]
|
||||||
|
|
||||||
|
\[
|
||||||
|
\therefore {(A^{\theta})}^{\theta} = A
|
||||||
|
\]
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
Loading…
Reference in New Issue