Add maths assignment 4
This commit is contained in:
		
							
								
								
									
										601
									
								
								maths/assignment-matrices/assign4.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										601
									
								
								maths/assignment-matrices/assign4.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,601 @@ | ||||
| \documentclass{article} | ||||
| \usepackage{amsmath} | ||||
| \usepackage{amssymb} | ||||
| \begin{document} | ||||
| \title{Mathematics Assignment 4 --- Matrices} | ||||
| \author{Ahmad Saalim Lone, 2019BCSE017} | ||||
| \date{16 May, 2020} | ||||
| \maketitle | ||||
|  | ||||
| \section*{Question 1} | ||||
| \begin{align*} | ||||
| 	A &= | ||||
| 	\begin{bmatrix} | ||||
| 		1 & -1 & -1 & 2 \\ | ||||
| 		4 & 2 & 2 & -1 \\ | ||||
| 		2 & 2 & 0 & -2 | ||||
| 	\end{bmatrix} | ||||
| 	\\ | ||||
| 	PAQ &= \text{Normal form} \\ | ||||
| 	I_3AI_4 &= A_{3 \times 4} \\ | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 0 & 0 \\ | ||||
| 		0 & 1 & 0 \\ | ||||
| 		0 & 0 & 1 | ||||
| 	\end{bmatrix} | ||||
| 	A | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 0 & 0 & 0 \\ | ||||
| 		0 & 1 & 0 & 0 \\ | ||||
| 		0 & 0 & 1 & 0 \\ | ||||
| 		0 & 0 & 0 & 1 | ||||
| 	\end{bmatrix} | ||||
| 			&= | ||||
| 			\begin{bmatrix} | ||||
| 				1 & -1 & -1 & 2 \\ | ||||
| 				4 & 2 & 2 & -1 \\ | ||||
| 				2 & 2 & 0 & -2 | ||||
| 			\end{bmatrix} | ||||
| \end{align*} | ||||
|  | ||||
| Applying the following row tranformations on $I_3$ and column tranformations on $I_4$. | ||||
|  | ||||
| \begin{align*} | ||||
| 	C_4 &\to C_4 + C_2 \\ | ||||
| 	R_3 &\to \frac{R_3}{2} \\ | ||||
| 	R_2 &\to \frac{R_2 + 2R_1}{3} \\ | ||||
| 	R_1 &\to R_1 + R_3 \\ | ||||
| 	C_1 &\to C_1 - 2 C_4 \\ | ||||
| 	C_4 &\to  C_4 + C_3 \\ | ||||
| 	C_2 &\to C_2 - C_1 \\ | ||||
| 	C_3 &\rightleftharpoons C_1 \\ | ||||
| 	C_2 &\rightleftharpoons C_4 \\ | ||||
| 	R_1 &\rightleftharpoons -R_1 | ||||
| \end{align*} | ||||
|  | ||||
| we get | ||||
| \begin{align*} | ||||
| 	P &= | ||||
| 	\begin{bmatrix} | ||||
| 		-1 & 0 & -\frac{1}{2} \\[6pt] | ||||
| 		\frac{2}{3} & \frac{1}{3} & 0 \\[6pt] | ||||
| 		0 & 0 & \frac{1}{2} | ||||
| 	\end{bmatrix} | ||||
| 	\\ | ||||
| 	Q &= | ||||
| 	\begin{bmatrix} | ||||
| 		0 & 0 & 1 & -1 \\ | ||||
| 		0 & 0 & -2 & 3 \\ | ||||
| 		1 & 1 & 0 & 0 \\ | ||||
| 		0 & 1 & -2 & 2 | ||||
| 	\end{bmatrix} | ||||
| 	\\ | ||||
| 	\text{Normal Form of A} &= | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 0 & 0 & 0 \\ | ||||
| 		0 & 1 & 0 & 0 \\ | ||||
| 		0 & 0 & 1 & 0 | ||||
| 	\end{bmatrix} | ||||
| \end{align*} | ||||
| \section*{Question 2} | ||||
| \[ | ||||
| 	x^2yz = xy^2z^3 = x^3y^2z = e | ||||
| \] | ||||
|  | ||||
| Taking $\ln$ on both sides | ||||
| \begin{align*} | ||||
| 	2\ln{x} + \ln{y} \ln{z} &= 1 \\ | ||||
| 	\ln{x} + 2 \ln{y} + 3 \ln{z} &= 1 \\ | ||||
| 	3\ln{x} + 2\ln{y} + \ln{z} &= 1 | ||||
| \end{align*} | ||||
|  | ||||
| \[ | ||||
| 	\text{Augemented Matrix} = [A:B] = | ||||
| \begin{bmatrix} | ||||
| 2 & 1 & 1 & : & 1 \\ | ||||
| 1 & 2 & 3 & : & 1 \\ | ||||
| 3 & 2 & 1 & : & 1 | ||||
| \end{bmatrix} | ||||
| \] | ||||
| After ppling the following tranformations | ||||
| \begin{align*} | ||||
| 	R_3 &\to R_3 - R_1 \\ | ||||
| 	R_2 &\to R_2 - R_1 \\ | ||||
| 	R_2 &\to R_2 - R_1 \\ | ||||
| 	R_1 &\to R_1 -R_3 | ||||
| \end{align*} | ||||
|  | ||||
| We get | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| 1 & 0 & 1 & : & 1 \\ | ||||
| -3 & 0 & 1 & : & -1 \\ | ||||
| 1 & 1 & 0 & : & 0 | ||||
| \end{bmatrix} | ||||
| \] | ||||
| $Rank(A) = Rank(A:B) = 3 = n$\\ | ||||
| $\therefore$ unique solution. | ||||
| \section*{Question 3} | ||||
| \begin{align*} | ||||
| 	x - cy - bz &= 0 \\ | ||||
| 	cx - y + az &= 0 \\ | ||||
| 	bx + ay - z &= 0 \\ | ||||
| 	\text{Augemented matrix} &= | ||||
| \begin{bmatrix} | ||||
| 1 & -c & -b & : & 0 \\ | ||||
| c & -1 & a & : & 0 \\ | ||||
| b & a & -1 & : & 0 | ||||
| \end{bmatrix} | ||||
| \end{align*} | ||||
|  | ||||
| Applying the following tranformations | ||||
| \begin{align*} | ||||
| 	R_2 &\to R_2 - cR_1 \\ | ||||
| 	R_3 &\to R_3 - bR_1 \\ | ||||
| 	R_2 &\to \frac{R_2}{c^2 - 1} \\ | ||||
| 	R_3 &\to R_3 - (a + bc)R_2 | ||||
| \end{align*} | ||||
| we get | ||||
| \[ | ||||
| 	C = | ||||
| \begin{bmatrix} | ||||
| 	1 & -c & -b & : & 0 \\[6pt] | ||||
| 	0 & 1 & \frac{bc+c}{c^2 - 1} & : & 0 \\[6pt] | ||||
| 0 & 0 & b^2 - 1 - \frac{{(a+bc)}^2}{c^2 - 1} & : & 0 | ||||
| \end{bmatrix} | ||||
| \] | ||||
|  | ||||
| For non trivial solutions $Rank(A) = Rank(c) \ne number\;of\;unknows$ | ||||
| \begin{align*} | ||||
| 	b^2 - 1 \frac{{(a+bc)}^2}{c^2 -1} &= 0 \\ | ||||
| 	\implies a^2 + b^2 + c^2 + 2abc &= 1 \\ | ||||
| \end{align*} | ||||
| Now | ||||
| \begin{align*} | ||||
| 	x - cy -bz &= 0 \\ | ||||
| 	y + \left(\frac{bc + a}{c^2 - 1}z\right) &= 0 \\ | ||||
| \end{align*} | ||||
| We get | ||||
| \begin{align*} | ||||
| 	x &= \frac{ac + b}{1-c^2}z \\ | ||||
| 	y &= \frac{bc + a}{1 - c^2}z \\ | ||||
| 	z &= z \\ | ||||
| 	x : y : z &= \sqrt{|1 - a^2|} : \sqrt{|1 - b^2|} : \sqrt{|1 -c^2|} | ||||
| \end{align*} | ||||
|  | ||||
| \section{Question 4} | ||||
| \begin{align*} | ||||
| 	A &= | ||||
| \begin{bmatrix} | ||||
| 3 & -4 & 4 \\ | ||||
| 1 & -2 & 44 \\ | ||||
| 1 & -1 & 3 | ||||
| \end{bmatrix} \\ | ||||
| 	|A - \lambda I| &= 0\\ | ||||
| \begin{vmatrix} | ||||
| 3 - \lambda & -4 & 4 \\ | ||||
| 1 & -2 - \lambda & 44 \\ | ||||
| 1 & -1 & 3 - \lambda | ||||
| \end{vmatrix} &= 0 | ||||
| \end{align*} | ||||
|  | ||||
| \( \lambda = -1, 2, 3 \) are Eigen Values | ||||
|  | ||||
| For $\lambda = -1$ | ||||
| \begin{align*} | ||||
| 	\begin{bmatrix} | ||||
| 		4 & -4 & 4 \\ | ||||
| 		1 & -1 & 4 \\ | ||||
| 		1 & -1 & 4 | ||||
| 	\end{bmatrix} | ||||
| 	\begin{bmatrix} | ||||
| 		x \\ | ||||
| 		y \\ | ||||
| 		z | ||||
| 	\end{bmatrix} | ||||
| &= | ||||
| \begin{bmatrix} | ||||
| 	0 \\ | ||||
| 	0 \\ | ||||
| 	0 | ||||
| \end{bmatrix} \\ | ||||
| 	\text{Eigen Vector} &= | ||||
| 	\begin{bmatrix} | ||||
| 		1 \\ | ||||
| 		1 \\ | ||||
| 		0 | ||||
| 	\end{bmatrix} | ||||
| \end{align*} | ||||
| For $\lambda = 2$ | ||||
| \begin{align*} | ||||
| \begin{bmatrix} | ||||
| 1 & -4 & 4 \\ | ||||
| 1 & -4 & 4 \\ | ||||
| 1 & -1 & 1 | ||||
| \end{bmatrix} | ||||
| 	\begin{bmatrix} | ||||
| 		x \\ | ||||
| 		y \\ | ||||
| 		z | ||||
| 	\end{bmatrix} | ||||
| &= | ||||
| \begin{bmatrix} | ||||
| 	0 \\ | ||||
| 	0 \\ | ||||
| 	0 | ||||
| \end{bmatrix} \\ | ||||
| 	\text{Eigen Vector} &= | ||||
| 	\begin{bmatrix} | ||||
| 		0 \\ | ||||
| 		1 \\ | ||||
| 		1 | ||||
| 	\end{bmatrix} | ||||
| \end{align*} | ||||
| For $\lambda = 3$ | ||||
| \begin{align*} | ||||
| \begin{bmatrix} | ||||
| 0 & -4 & 4 \\ | ||||
| 1 & -5 & 4 \\ | ||||
| 1 & -1 & 0 | ||||
| \end{bmatrix} | ||||
| 	\begin{bmatrix} | ||||
| 		x \\ | ||||
| 		y \\ | ||||
| 		z | ||||
| 	\end{bmatrix} | ||||
| &= | ||||
| \begin{bmatrix} | ||||
| 	0 \\ | ||||
| 	0 \\ | ||||
| 	0 | ||||
| \end{bmatrix} \\ | ||||
| 	\text{Eigen Vector} &= | ||||
| 	\begin{bmatrix} | ||||
| 		1 \\ | ||||
| 		1 \\ | ||||
| 		1 | ||||
| 	\end{bmatrix} | ||||
| \end{align*} | ||||
| \section*{Question 5} | ||||
| \begin{align*} | ||||
| 	A &= | ||||
| \begin{bmatrix} | ||||
| 2 & 2 & 0 \\ | ||||
| 2 & 1 & 1 \\ | ||||
| -7 & 2 & -3 | ||||
| \end{bmatrix} | ||||
| \\ | ||||
| 	|A - \lambda I| &=  0 \\ | ||||
| \begin{vmatrix} | ||||
| 2 - \lambda & 2 & 0 \\ | ||||
| 2 & 1 - \lambda & 1 \\ | ||||
| -7 & 2 & -3 - \lambda | ||||
| \end{vmatrix} &= 0 | ||||
| \end{align*} | ||||
|  | ||||
| Eigen values $\lambda = 1, 3, -4$ \\ | ||||
|  | ||||
| 1\textsuperscript{st} eigen value of $A^2 -2 A  + I = 1^2 - 2(1) + 1 = 0$ | ||||
|  | ||||
| 2\textsuperscript{nd} eigen value of $A^2 -2 A  + I = 3^2 - 2(3) + 1 = 4$ | ||||
|  | ||||
| 3\textsuperscript{rd} eigen value of $A^2 -2 A  + I = {(-4)}^2 - 2(-4) + 1 = 25$ | ||||
|  | ||||
| \section*{Question 6} | ||||
| \begin{align*} | ||||
| 	A &= | ||||
| \begin{bmatrix} | ||||
| 7 & 3 \\ | ||||
| 2 & 6 | ||||
| \end{bmatrix} | ||||
| \\ | ||||
| 	| A - \lambda I| &= 0 \\ | ||||
| \begin{vmatrix} | ||||
| 	7 - \lambda & 3 \\ | ||||
| 	2 & 6 - \lambda | ||||
| \end{vmatrix} &= 0 \\ | ||||
| 	(7 - \lambda)(6 - \lambda) - 5 &= 0 \\ | ||||
| 	(\lambda - 4)(\lambda - 9) &= 0 \\ | ||||
| 	A^2 - 13 A + 36 &= 0 \\ | ||||
| 	A^2 &= 13 A - 36 \\ | ||||
| 	A^2\cdot A &= (13 A - 36)A \\ | ||||
| 	A^3 &= 13 A^2 - 36A \\ | ||||
| 	A^3 &= | ||||
| \begin{bmatrix} | ||||
| 715 & 507 \\ | ||||
| 338 & 546 | ||||
| \end{bmatrix} | ||||
| - | ||||
| \begin{bmatrix} | ||||
| 252 & 108 \\ | ||||
| 72 & 216 | ||||
| \end{bmatrix} \\ | ||||
| 	A^3 &= | ||||
| \begin{bmatrix} | ||||
| 463 & 399 \\ | ||||
| 266 & 330 | ||||
| \end{bmatrix} | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 7} | ||||
| Suppose that $\lambda$ is a (possibly complex) eigen value of the real symmetric matrix $A$. Thus, there is a non-zero vector $V$, also with complex entries such that $AV = \lambda V$. By taking the complex conjugate of both sides and noting that $\overline{A} = A$ since $A$ has real entries, we get $\overline{AV} = \overline{\lambda V} \implies A\overline{V} = \overline{\lambda}\;\overline{V}$. Then using that $A^T = A$, | ||||
| \begin{gather*} | ||||
| 	\overline{V}^T AV = \overline{V}^t(AV) = \overline{V}(\lambda V) = \lambda( \overline{V}V ) \\ | ||||
| 	\overline{V}^T AV = {(A \overline{V})}^T V = {( \overline{\lambda}\;\overline{V} )}^T V = \overline{\lambda} ( \overline{V} V ) | ||||
| \end{gather*} | ||||
|  | ||||
| Since $V \ne 0$, we have $ \overline{V}V \ne 0$. Thus $\lambda = \overline{\lambda}$, which means $\lambda \in R$. | ||||
|  | ||||
| \section*{Question 8} | ||||
| Quadratic Form $ax_1^2 + cx_2^2 - 2bx_1x_2$ | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| a & -b \\ | ||||
| -b & c | ||||
| \end{bmatrix} | ||||
| \] | ||||
| Convert it to diagonal matrix by applying | ||||
| \begin{align*} | ||||
| 	R_2 &\to R_2 + \frac{b}{a}R_1 \\ | ||||
| 	C_2 &\to C_2 + \frac{b}{a}C_1 | ||||
| \end{align*} | ||||
| Now, we get | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| a & 0 \\ | ||||
| 0 & c - \frac{b^2}{a} | ||||
| \end{bmatrix} | ||||
| \] | ||||
|  | ||||
| Nature $\to$ positive definite $\to$ when $rank(r) = index(s)$ or when all eigen values are positive i.e. $a > 0$ \& $c - \frac{b^2}{a} > 0 \implies ac -b^2 > 0$. Hence proved. | ||||
|  | ||||
| \section*{Question 9} | ||||
| \( | ||||
| A = | ||||
| \begin{bmatrix} | ||||
| 	\lambda & 1 & 1 \\ | ||||
| 1 & \lambda & -1 \\ | ||||
| 1 & -1 & \lambda | ||||
| \end{bmatrix} | ||||
| \) is a symmetric matrix obtained when compared to Quadratic form $\lambda(x^2+ y^2 + z^2) + 2xy + 2zx -2yz$. | ||||
|  | ||||
| Now, convert $A$ into diagonal matrix by: | ||||
| \begin{align*} | ||||
| 	C_1 &\to C_1 + C_3 \\ | ||||
| 	C_1 &\to \frac{C_1}{\lambda + 1} \\ | ||||
| 	R_3 &\to R_3 - R_1 \\ | ||||
| 	C_3 &\to C_3 - C_1 \\ | ||||
| 	C_2 &\to C_2 -C_1 \\ | ||||
| 	C_3 &\to C_3 + \frac{C_2}{\lambda} \\ | ||||
| 	R_3 &\to R_3 + \frac{2R_2}{\lambda} | ||||
| \end{align*} | ||||
|  | ||||
| we get, | ||||
|  | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| 1 & 0 & 0 \\ | ||||
| 0 & \lambda & 0 \\ | ||||
| 0 & 0 & \lambda - \frac{2}{\lambda} - 1 | ||||
| \end{bmatrix} | ||||
| \] | ||||
| For definite positive nature, all Eigen values must be positive i.e. $\lambda > 0$, $\lambda - \frac{2}{\lambda} - 1 > 0$. Taking intersection of these two, we get $\lambda \in (2, \infty)$. | ||||
|  | ||||
| \section*{Question 10} | ||||
|  | ||||
| Multiplication of all the eigen values = determinant of the matrix. For singular matrix, determinant value = 0. | ||||
| \begin{align*} | ||||
| 	\text{Eigen Values} &= 2, 3, a \\ | ||||
| 	6a &= 0 \\ | ||||
| 	a &= 0 | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 11} | ||||
|  | ||||
| Quadratic Form $x_2^2 + 2x_2^2 - 5x_3^2$ | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| 1 & 0 & 0 \\ | ||||
| 0 & 2 & 0 \\ | ||||
| 0 & 0 & -5 | ||||
| \end{bmatrix} | ||||
| \] | ||||
| \begin{align*} | ||||
| 	index(s) &= 2\;\text{(No of positive terms)} \\ | ||||
| 	rank(r) &= 3 \\ | ||||
| 	signature &= 2s -r = 4 - 3 = 1 | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 12} | ||||
|  | ||||
| Quadratic form $ax^2 + 2bcy + cy^2$. | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| a & b \\ | ||||
| b & c | ||||
| \end{bmatrix} | ||||
| \] | ||||
| Convert it into diagonal matrix by doing: | ||||
| \begin{align*} | ||||
| 	R_2 &\to R_2 - \left(\frac{b}{a}\right)R_1 \\ | ||||
| 	C_2 &\to C_2 - \left(\frac{b}{a}\right)C_1 | ||||
| \end{align*} | ||||
|  | ||||
| Finally, we get | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| a & 0 \\ | ||||
| 0 & c - \frac{b^2}{a} | ||||
| \end{bmatrix} | ||||
| \] | ||||
| For positive definite, $a>0$ and $ac -b^2 > 0$. \\ | ||||
| For negative definite, $a<0$ and $ac -b^2 > 0$. \\ | ||||
| Roots of the quadratic equation ($ax^2 + 2bx + c = 0$) are imaginary when $D < 0$. \\ | ||||
| ${(2b)}^2 - 4ac = 4( b^2 - ac )$ is always negative | ||||
|  | ||||
| \section*{Question 13} | ||||
| \begin{align*} | ||||
| 	X_1 &= | ||||
| \begin{bmatrix} | ||||
| 1 \\ | ||||
| 2 \\ | ||||
| -3 \\ | ||||
| 4 | ||||
| \end{bmatrix} | ||||
| \\ | ||||
| 	X_2 &= | ||||
| \begin{bmatrix} | ||||
| 1 \\ | ||||
| -5 \\ | ||||
| 8 \\ | ||||
| -7 | ||||
| \end{bmatrix} | ||||
| \\ | ||||
| 	X_3 &= | ||||
| \begin{bmatrix} | ||||
| 1 \\ | ||||
| -5 \\ | ||||
| 8 \\ | ||||
| -7 | ||||
| \end{bmatrix} | ||||
| \\ | ||||
| 	\lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 &= 0 \\ | ||||
| \begin{bmatrix} | ||||
| 1 & 1 & 1 \\ | ||||
| 2 & -5 & -5 \\ | ||||
| -3 & 8 & 8 \\ | ||||
| 4 & -7 & -7 | ||||
| \end{bmatrix} | ||||
| \begin{bmatrix} | ||||
| \lambda_1 \\ | ||||
| \lambda_2 \\ | ||||
| \lambda_3 | ||||
| \end{bmatrix} &= | ||||
| \begin{bmatrix} | ||||
| 0 \\ | ||||
| 0 \\ | ||||
| 0 \\ | ||||
| 0 | ||||
| \end{bmatrix} | ||||
| \end{align*} | ||||
| Applying the following tranformations | ||||
| \begin{align*} | ||||
| 	R_2 &\to R_2 - 2R_1 \\ | ||||
| 	R_2 &\to -\frac{R_2}{7} \\ | ||||
| 	R_3 &\to R_3 + R_4 \\ | ||||
| 	R_3 &\to R_3 - R_1 \\ | ||||
| 	R_1 &\to R_1 - R_2 \\ | ||||
| 	R_3 &\to R_3 - 4 R_1 \\ | ||||
| 	R_4 &\to -\frac{R_4}{7} \\ | ||||
| 	R_4 &\to R_4 - R_2 | ||||
| \end{align*} | ||||
| we get | ||||
| \begin{align*} | ||||
| \begin{bmatrix} | ||||
| 1 & 2 & 0 \\ | ||||
| 0 & 1 & 1 \\ | ||||
| 0 & 0 & 0 \\ | ||||
| 0 & 0 & 0 | ||||
| \end{bmatrix} | ||||
| \begin{bmatrix} | ||||
| \lambda_1 \\ | ||||
| \lambda_2 \\ | ||||
| \lambda_3 | ||||
| \end{bmatrix} | ||||
| &= | ||||
| \begin{bmatrix} | ||||
| 0 \\ | ||||
| 0 \\ | ||||
| 0 \\ | ||||
| 0 | ||||
| \end{bmatrix} \\ | ||||
| 	\lambda_1 + 2\lambda_2 &= 0 \\ | ||||
| 	\lambda_2 + \lambda_3 &= 0 | ||||
| 	\therefore \\ | ||||
| 	\lambda_1 &= t \\ | ||||
| 	\lambda_2 &= -\frac{t}{2} \\ | ||||
| 	\lambda_3 &= \frac{t}{2} | ||||
| \end{align*} | ||||
| Putting the values, we get | ||||
|  | ||||
| \[ | ||||
| 	2 X_1 - X_2 + X_3 = 0 | ||||
| \] | ||||
|  | ||||
| \section*{Question 14} | ||||
|  | ||||
| \begin{align*} | ||||
| 	(2 - \lambda)x_1 + (-2)x_2 + x_3 &= 0 \\ | ||||
| 	2x_1 - (\lambda + 3) x_2 + 2x_3 &= 0 \\ | ||||
| 	-x_1 + 2x_2 - \lambda x_3 &= 0 | ||||
| \end{align*} | ||||
|  | ||||
| \( | ||||
| 	Rank(A) = Rank(\text{augemented matrix}) < 3 | ||||
| \) for non trivial solutions. | ||||
|  | ||||
| Check the determinant first, $\Delta = 0$ | ||||
|  | ||||
| $\Delta = 0$ gets us $\lambda = 1, 3$ | ||||
|  | ||||
| Now, for augemented matrix $[A:B]$, put $\lambda = 1, -3$ in \( | ||||
| \begin{bmatrix} | ||||
| 2-\lambda & -2 & 1 & : & 0 \\ | ||||
| 2 & -(\lambda + 3) & 2 & : & 0 \\ | ||||
| -1 & 2 & -\lambda & : & 0 | ||||
| \end{bmatrix} | ||||
| \) | ||||
|  | ||||
| For $\lambda = 1$ | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| 1 & -2 & 1 & : & 0 \\ | ||||
| 2 & -4 & 2 & : & 0 \\ | ||||
| -1 & 2 & -1 & : & 0 | ||||
| \end{bmatrix} | ||||
| \] | ||||
|  | ||||
| Doing transformations to form row echelon form, we get | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| 1 & -2 & 1 & : & 0 \\ | ||||
| 0 & 0 & 0 & : & 0 \\ | ||||
| 0 & 0 & 0 & : & 0 | ||||
| \end{bmatrix} | ||||
| \] | ||||
| \begin{align*} | ||||
| 	x_1 -2x_2 + x_3 &= 0 \\ | ||||
| 	if\;x_2 = k,\;x_3 = t, then\;x_1 &= 2k - t | ||||
| \end{align*} | ||||
| For $\lambda = -3$ | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| 5 & -2 & 1 & : & 0 \\ | ||||
| 2 & 0 & 2 & : & 0 \\ | ||||
| -1 & 2 & 3 & : & 0 | ||||
| \end{bmatrix} | ||||
| \] | ||||
|  | ||||
| Doing transformations to form row echelon form, we get | ||||
| \[ | ||||
| \begin{bmatrix} | ||||
| 5 & -2 & 1 & : & 0 \\ | ||||
| 0 & \frac{4}{5} & \frac{8}{5} & : & 0 \\ | ||||
| 0 & 0 & 0 & 0 & 0 | ||||
| \end{bmatrix} | ||||
| \] | ||||
| \begin{align*} | ||||
| 	5x_1 - 2x_2 + x_3 &= 0 \\ | ||||
| 	\frac{4x_2}{5} + \frac{8x_3}{5} &= 0 \\ | ||||
| 	if\;x_3 = t, then \\ | ||||
| 	x_1 &= - t \\ | ||||
| 	x_2 &= -2t \\ | ||||
| 	x_3 &= t | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 15} | ||||
| \subsection*{Part i} | ||||
| Since $A + A^{-1} = 0$, $A$ must either be skew symmetric. If A is skew symmetric, we know that the rank of an odd order skew symmetric matrix must be even. $\therefore Rank \leq 2020$ | ||||
| \subsection*{Part ii} | ||||
| Inverse does not exist as $A$ is singular matrix. | ||||
| \end{document} | ||||
		Reference in New Issue
	
	Block a user