301 lines
4.4 KiB
TeX
301 lines
4.4 KiB
TeX
\documentclass{article}
|
|
% Import for matrices
|
|
\usepackage{amsmath}
|
|
% Import for therefore symbol
|
|
\usepackage{amssymb}
|
|
\begin{document}
|
|
\title{Mathematics Assignment --- Matrices}
|
|
\author{Ahmad Saalim Lone, 2019BCSE017}
|
|
\date{05 May, 2020}
|
|
\maketitle
|
|
\section{Question 1}
|
|
\[
|
|
A =
|
|
\begin{bmatrix}
|
|
2 & -5 & -1 \\
|
|
-2 & -1 & 4
|
|
\end{bmatrix}
|
|
B =
|
|
\begin{bmatrix}
|
|
3 & 4 & 0 \\
|
|
5 & -2 & 3
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
\subsection{Part i}
|
|
\[
|
|
A + B =
|
|
\begin{bmatrix}
|
|
2 + 1 & -5 + 4 & -1 + 0 \\
|
|
-2 + 5 & -1 -2 & 4 + 3
|
|
\end{bmatrix}
|
|
\]
|
|
\[
|
|
A + B =
|
|
\begin{bmatrix}
|
|
3 & -1 & -1 \\
|
|
3 & -3 & 7
|
|
\end{bmatrix}
|
|
\]
|
|
\subsection{Part ii}
|
|
\[
|
|
2A + B =
|
|
\begin{bmatrix}
|
|
4 + 1 & -10 + 4 & -2 + 0 \\
|
|
-4 + 5 & -2 -2 & 8 + 3
|
|
\end{bmatrix}
|
|
\]
|
|
\[
|
|
2A + B =
|
|
\begin{bmatrix}
|
|
5 & -6 & -2 \\
|
|
1 & -4 & 11
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
|
|
\section{Question 2}
|
|
\[
|
|
A =
|
|
\begin{bmatrix}
|
|
1 & 2 & 3 \\
|
|
4 & 5 & 6 \\
|
|
7 & 8 & 9
|
|
\end{bmatrix}
|
|
B =
|
|
\begin{bmatrix}
|
|
1 & 0 & 2 \\
|
|
2 & 1 & 2 \\
|
|
5 & 2 & 3
|
|
\end{bmatrix}
|
|
\]
|
|
\[
|
|
AB =
|
|
\begin{bmatrix}
|
|
1 & 2 & 3 \\
|
|
4 & 5 & 6 \\
|
|
7 & 8 & 9
|
|
\end{bmatrix}
|
|
\begin{bmatrix}
|
|
1 & 0 & 2 \\
|
|
2 & 1 & 2 \\
|
|
5 & 2 & 3
|
|
\end{bmatrix}
|
|
\]
|
|
\[
|
|
AB =
|
|
\begin{bmatrix}
|
|
1 \times 1 + 2 \times 2 + 3 \times 5 & 1 \times 0 + 2 \times 1 + 3 \times 2 & 1 \times 2 + 2 \times 2 + 3 \times 3 \\
|
|
4 \times 1 + 5 \times 2 + 6 \times 5 & 4 \times 0 + 5 \times 1 + 6 \times 2 & 4 \times 2 + 5 \times 2 + 6 \times 3 \\
|
|
7 \times 1 + 8 \times 2 + 9 \times 5 & 7 \times 0 + 8 \times 1 + 9 \times 2 & 7 \times 2 + 8 \times 2 + 9 \times 3
|
|
\end{bmatrix}
|
|
\]
|
|
\[
|
|
AB =
|
|
\begin{bmatrix}
|
|
20 & 8 & 16 \\
|
|
44 & 17 & 36 \\
|
|
68 & 26 & 57
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
|
|
\section{Question 3}
|
|
If \(
|
|
A =
|
|
\begin{bmatrix}
|
|
1 & -2 & -3 \\
|
|
-4 & 2 & 5
|
|
\end{bmatrix}
|
|
B =
|
|
\begin{bmatrix}
|
|
2 & 3 \\
|
|
4 & 5 \\
|
|
2 & 1
|
|
\end{bmatrix}
|
|
\), show that \(AB \ne BA\).
|
|
|
|
Order of $A$ = $2\times3$
|
|
|
|
Order of $B$ = $3\times2$
|
|
|
|
Order of $AB$ = $rows \; of \; A \times columns \; of \; B$ = $2\times2$
|
|
|
|
Order of $BA$ = $rows \; of \; B \times columns \; of \; A$ = $3\times3$
|
|
|
|
Matrices of different order can't be equal.
|
|
|
|
$\therefore AB \ne BA$
|
|
|
|
\section{Question 4}
|
|
|
|
Show that \(
|
|
A =
|
|
\begin{bmatrix}
|
|
3 & 1 + 2i \\
|
|
1-2i & 2
|
|
\end{bmatrix}
|
|
\) is a hermitian.
|
|
|
|
For a matrix to be hermitian, each element $a_{i,j}$ needs to be the complex
|
|
conjugate of the element at $a_{j,i}$. In given matrix, we have
|
|
|
|
\begin{itemize}
|
|
\item \(a_{11} = 3\)
|
|
\item \(a_{12} = 1 + 2i\)
|
|
\item \(a_{21} = 1 - 2i\)
|
|
\item \(a_{22} = 2\)
|
|
\end{itemize}
|
|
|
|
The conjugates are as follows
|
|
|
|
\begin{itemize}
|
|
\item \(\overline{a_{11}} = 3\)
|
|
\item \(\overline{a_{12}} = 1 - 2i\)
|
|
\item \(\overline{a_{21}} = 1 + 2i\)
|
|
\item \(\overline{a_{22}} = 2\)
|
|
\end{itemize}
|
|
|
|
As we can see, \(\overline{a_{11}} = a_{11}\), \(\overline{a_{12}} = a_{21}\), \(\overline{a_{21}} = a_{12}\) and \(\overline{a_{22}} = a_{22}\).
|
|
|
|
$\therefore A$ is hermitian.
|
|
|
|
\section{Question 5}
|
|
|
|
If \(
|
|
A =
|
|
\begin{bmatrix}
|
|
5 & 1 + i \\
|
|
-1 + i & 4
|
|
\end{bmatrix}
|
|
\), show that ${(A^{\theta})}^{\theta}$
|
|
|
|
\[
|
|
A =
|
|
\begin{bmatrix}
|
|
5 & 1 + i \\
|
|
-1 + i & 4
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
\[
|
|
\overline{A^{\theta}} =
|
|
\begin{bmatrix}
|
|
5 & - 1 - i \\
|
|
1 + i & 4
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
|
|
\[
|
|
{(A^{\theta})}^{\theta} =
|
|
\begin{bmatrix}
|
|
5 & 1 + i \\
|
|
-1 + i & 4
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
\[
|
|
\therefore {(A^{\theta})}^{\theta} = A
|
|
\]
|
|
|
|
\section{Question 6}
|
|
|
|
$ A =
|
|
\begin{bmatrix}
|
|
1 & 0 & -1 \\
|
|
3 & 4 & 5 \\
|
|
0 & -6 & -7
|
|
\end{bmatrix}
|
|
$, find $ adj. A$
|
|
|
|
Adjoint of a matrix is the transpose of the cofactor matrix of the original matrix
|
|
|
|
\[
|
|
A_{11} =
|
|
\begin{vmatrix}
|
|
4 & 5 \\
|
|
-6 & -7
|
|
\end{vmatrix}
|
|
= 2
|
|
\;\;
|
|
A_{12} =
|
|
\begin{vmatrix}
|
|
3 & 5 \\
|
|
0 & -7
|
|
\end{vmatrix}
|
|
= -21
|
|
\;\;
|
|
A_{13} =
|
|
\begin{vmatrix}
|
|
3 & 4 \\
|
|
0 & -6
|
|
\end{vmatrix}
|
|
= -18
|
|
\]
|
|
\[
|
|
A_{21} =
|
|
\begin{vmatrix}
|
|
0 & -1 \\
|
|
-6 & -7
|
|
\end{vmatrix}
|
|
= -6
|
|
\;\;
|
|
A_{22} =
|
|
\begin{vmatrix}
|
|
1 & -1 \\
|
|
0 & -7
|
|
\end{vmatrix}
|
|
= -7
|
|
\;\;
|
|
A_{23} =
|
|
\begin{vmatrix}
|
|
1 & -1 \\
|
|
0 & -6
|
|
\end{vmatrix}
|
|
= -6
|
|
\]
|
|
\[
|
|
A_{31} =
|
|
\begin{vmatrix}
|
|
0 & -1 \\
|
|
4 & 5
|
|
\end{vmatrix}
|
|
= 4
|
|
\;\;
|
|
A_{32} =
|
|
\begin{vmatrix}
|
|
1 & -1 \\
|
|
3 & 5
|
|
\end{vmatrix}
|
|
= 8
|
|
\;\;
|
|
A_{33} =
|
|
\begin{vmatrix}
|
|
1 & 0 \\
|
|
3 & 4
|
|
\end{vmatrix}
|
|
= 4
|
|
\]
|
|
|
|
\[
|
|
Cofactor\;Matrix =
|
|
\begin{bmatrix}
|
|
2 & -21 & -18 \\
|
|
-6 & -7 & -6 \\
|
|
4 & 8 & 4
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
Adjoint matrix is the transpose of Cofactor Matrix.
|
|
\[
|
|
\therefore adj.A =
|
|
\begin{bmatrix}
|
|
2 & -6 & 4 \\
|
|
-21 & -7 & 8 \\
|
|
-18 & -6 & 4
|
|
\end{bmatrix}
|
|
\]
|
|
|
|
\end{document}
|