Add elements of mechanical engineering assignment.
This commit is contained in:
		
							
								
								
									
										158
									
								
								mech_engg/assignment-work-and-heat/assign.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										158
									
								
								mech_engg/assignment-work-and-heat/assign.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,158 @@ | ||||
| \documentclass{article} | ||||
| \usepackage{amsmath} | ||||
| \usepackage{amssymb} | ||||
| \begin{document} | ||||
| \title{Assignment --- Work \& Heat} | ||||
| \author{Ahmad Saalim Lone, 2019BCSE017} | ||||
| \date{07 May, 2020} | ||||
| \maketitle | ||||
| \section*{Question 1} | ||||
| The piston of an oil engine of area $0.0045 m^{3}$ moves downward $75 mm$, | ||||
| drawing in $0.00028 m^3$ of fresh air from the atmosphere. The pressure in the | ||||
| cylinder is uniform during the process at $80 kPa$, while atmospheric pressure | ||||
| is $101.325 kPa$, the difference being due to the flow resistance in the | ||||
| induction pipe and the inlet valve. Estimate the displacement work done by the | ||||
| air finally in the cylinder. | ||||
|  | ||||
| \subsection*{Solution} | ||||
| \begin{align*} | ||||
| 	\text{Area of the Piston} &= 0.0045m^2 \\ | ||||
| 	\text{displacement} &= 75 mm = 0.075 m \\ | ||||
| 	\text{Volume covered} = \Delta V &= 0.075 \times 0.0045 m^3 \\ | ||||
| 	\Delta V &= 0.0003375 m^3 \\ | ||||
| 	\text{pressure in the cylinder is constant} &= 80 kPa \\ | ||||
| 	\text{Work done} = p \Delta V &= 80 kPa \times 0.0003375 m^3 = 27 J | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 2} | ||||
|  | ||||
| A mass of gas is compressed in a quasi-static process from $80 kPa, 0.1m^3$ to | ||||
| $0.4 MPa, 0.03 m^3$. Assuming that the pressure and volume are related by | ||||
| $pv^n = constant$, find the work done by the gas system. | ||||
|  | ||||
| \subsection*{Solution} | ||||
|  | ||||
| Quasi-static process is a thermodynamic process that happens slowly enough for | ||||
| the system to remain in internal equilibrium. | ||||
|  | ||||
| Given | ||||
| \begin{align*} | ||||
| 	P_1 &= 80 kPa \\ | ||||
| 	P_2 &= 0.4 MPa = 400 kPa \\ | ||||
| 	V_1 &= 0.1 m^3 \\ | ||||
| 	V_2 &= 0.03 m^3 \\ | ||||
| \end{align*} | ||||
|  | ||||
| Since, $PV^n = $ constant, the compression remains constant. So, | ||||
|  | ||||
| \begin{align*} | ||||
| 	P_1 V_1^n &= P_2 V_2^n \\ | ||||
| 	n &= \frac{\ln{\left(\frac{P_2}{P_1}\right)}}{\ln{\left(\frac{V_1}{V_2}\right)}} \\ | ||||
| 	n &= \frac{\ln{\left(\frac{400}{80}\right)}}{\ln{\left(\frac{0.1}{0.03}\right)}} \\ | ||||
| 	n &= \frac{\ln{5}}{\ln{3.\overline{3}}} \\ | ||||
| 	n &= \frac{\ln{5}}{\ln{3.\overline{3}}} \\ | ||||
| 	n &= 1.34 | ||||
| \end{align*} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\text{Work Done} &= \frac{P_1 V_1 - P_2 V_2}{n - 1} \\ | ||||
| 	&= \frac{80 \times 0.1 - 400 \times 0.03}{1.34 - 1} \\ | ||||
| 	&= - 11.76 J | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 3} | ||||
|  | ||||
| A system of volume $V$ contains a mass $m$ of gas at pressure $p$ and | ||||
| temperature $T$. The macroscopic properties of the system obey the following | ||||
| relationship | ||||
|  | ||||
| \[\left(P + \frac{a}{V^2}\right)\left(V - b \right) = mRT\] | ||||
|  | ||||
| Where $a$, $b$ and $R$ are constants. Obtain an expression for the displacement | ||||
| work done by the system during a constant temperature expansion from volume | ||||
| $V_1$ to volume $V_2$. Calculate the work done by a system which contains $10 | ||||
| kg$ of this gas expanding from $1m^3$ to $10 m^3$ at a temperature of $293 K$. | ||||
| Use the values $a= 15.7 \times 10 Nm^4$, $b= 1.07 \times 10-2 m^3$ and $R= 0.278 KkJ/kg$. | ||||
|  | ||||
| \subsection*{Solution} | ||||
|  | ||||
| \[\text{Macroscopic Properties} = \left(P + \frac{a}{V^2}\right)\left(V - b \right) = mRT\] | ||||
|  | ||||
| For constant temperature expansion, as $m$, $R$ \& $T$ are constants, we can | ||||
| deduce, | ||||
|  | ||||
| \[ mRT = \left(P_1 + \frac{a}{V_1^2}\right)\left(V_1 - b\right) = \left(P_2 + \frac{a}{V_2^2}\right)\left(V_2 - b\right)  = k\] | ||||
|  | ||||
| \[ \therefore k = mRT = 10 \times 0.278 \times 293 KJ = 814.54 KJ\] | ||||
|  | ||||
| We can find out $P_1$ and $P_2$ using the above equation | ||||
|  | ||||
| \begin{gather*} | ||||
| 	\left(P_1 + \frac{a}{V_1^2}\right)\left(V_1 - b\right) = k \\ | ||||
| 	P_1 + \frac{a}{V_1^2} = \frac{k}{V_1 - b} \\ | ||||
| 	P_1  = \frac{k}{V_1 - b} -  \frac{a}{V_1^2}\\ | ||||
| 	P_1  = 666.35 KPa | ||||
| \end{gather*} | ||||
|  | ||||
| Similarly, $P_2 = 80 KPa$ | ||||
|  | ||||
| We know, the equation for work is | ||||
| \begin{align*} | ||||
| 	W &= \int_{V_1}^{V_2}P dV \\ | ||||
| 	W &= \int_{V_1}^{V_2}\left(\frac{k}{V -b} - \frac{a}{V^2}\right) dV \\ | ||||
| 	W &= \left(P_1 + \frac{a}{V_1^2}\right)(V_1 - b) \ln\left(\frac{V_2 - b}{V_1 -b}\right) + a\left(\frac{1}{V_2} - \frac{1}{V_1}\right) \\ | ||||
| 	\text{Substituting values, we get} \\ | ||||
| 	W &= 1742 KJ | ||||
| \end{align*} | ||||
|  | ||||
|  | ||||
| \section*{Question 4} | ||||
|  | ||||
| If a gas of volume $6000 cm^3$ and at pressure of $100 kPa$ is compressed | ||||
| quasi-statically according to $pV^2 = constant$ until the volume becomes $2000 | ||||
| cm^3$, determine the final pressure and the work transfer. | ||||
|  | ||||
| \subsection*{Solution} | ||||
|  | ||||
| \begin{align*} | ||||
| 	V_1 &= 6000 cm^3 = 0.006 m^3 \\ | ||||
| 	V_2 &= 2000 cm^3 = 0.002 m^3 \\ | ||||
| 	P_1 &= 100 KPa | ||||
| \end{align*} | ||||
|  | ||||
| We know that | ||||
| \begin{align*} | ||||
| 	P_1 V_1^2 &= P_2 V_2^2  \\ | ||||
| 	\therefore P_2 &= 900 KPa | ||||
| \end{align*} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\text{Work Done} = W &= \frac{P_2 V_2 - P_1 V_1}{n - 1} \\ | ||||
| 						 &= \frac{900 \times 0.002 - 100 \times 0.006}{2 - 1} \\ | ||||
| 						 &= 1.2 KJ | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 5} | ||||
|  | ||||
| A mass of $1.5kg$ of air is compressed in a quasi-static process from $0.1 MPa$ | ||||
| to $0.7 MPa$ for which $pv= Constant$. The initial density of air is $1.16 | ||||
| kg/m3$. Find the work done by the piston to compress the air. | ||||
|  | ||||
| \subsection*{Solution} | ||||
|  | ||||
| \begin{align*} | ||||
| 	PV &= \text{constant} \\ | ||||
| 	\therefore P_1 V_1 &= P_2 V_2 \\ | ||||
| 	0.1 MPa \times V_1 &= 0.7 MPa \times \frac{d_1}{m_1} \\ | ||||
| 	0.1 MPa \times V_1 &= 0.7 MPa \times \frac{1.16 kg/m^3}{1.5 kg} \\ | ||||
| 	V_1 &= 1.293 m^3 | ||||
| \end{align*} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\text{Work Done} &= \int P dV \\ | ||||
| 					 &= \int_{V_1}^{V_2} \frac{P_1 V_1}{V} dV \\ | ||||
| 					 &= P_1 V_1 \int_{V_1}^{V_2} \frac{dV}{V} \\ | ||||
| 					 &= 251.63 KJ | ||||
| \end{align*} | ||||
|  | ||||
| \end{document} | ||||
		Reference in New Issue
	
	Block a user