Add Question 7
This commit is contained in:
		| @@ -212,21 +212,23 @@ $, find $ adj. A$ | ||||
| Adjoint of a matrix is the transpose of the cofactor matrix of the original matrix | ||||
|  | ||||
| \[ | ||||
| 	A_{11} = | ||||
| 	Cofactor\;of\;A_{11} = | ||||
| 	\begin{vmatrix} | ||||
| 		4 & 5 \\ | ||||
| 		-6 & -7 | ||||
| 	\end{vmatrix} | ||||
| 	= 2 | ||||
| 	\;\; | ||||
| 	A_{12} = | ||||
| \] | ||||
| \[ | ||||
| 	Cofactor\;of\;A_{12} = | ||||
| 	\begin{vmatrix} | ||||
| 		3 & 5 \\ | ||||
| 		0 & -7 | ||||
| 	\end{vmatrix} | ||||
| 	= -21 | ||||
| 	\;\; | ||||
| 	A_{13} = | ||||
| \] | ||||
| \[ | ||||
| 	Cofactor\;of\;A_{13} = | ||||
| 	\begin{vmatrix} | ||||
| 		3 & 4 \\ | ||||
| 		0 & -6 | ||||
| @@ -234,21 +236,23 @@ Adjoint of a matrix is the transpose of the cofactor matrix of the original matr | ||||
| 	= -18 | ||||
| \] | ||||
| \[ | ||||
| 	A_{21} = | ||||
| 	Cofactor\;of\;A_{21} = | ||||
| 	\begin{vmatrix} | ||||
| 		0 & -1 \\ | ||||
| 		-6 & -7 | ||||
| 	\end{vmatrix} | ||||
| 	= -6 | ||||
| 	\;\; | ||||
| 	A_{22} = | ||||
| \] | ||||
| \[ | ||||
| 	Cofactor\;of\;A_{22} = | ||||
| 	\begin{vmatrix} | ||||
| 		1 & -1 \\ | ||||
| 		0 & -7 | ||||
| 	\end{vmatrix} | ||||
| 	= -7 | ||||
| 	\;\; | ||||
| 	A_{23} = | ||||
| \] | ||||
| \[ | ||||
| 	Cofactor\;of\;A_{23} = | ||||
| 	\begin{vmatrix} | ||||
| 		1 & -1 \\ | ||||
| 		0 & -6 | ||||
| @@ -256,21 +260,23 @@ Adjoint of a matrix is the transpose of the cofactor matrix of the original matr | ||||
| 	= -6 | ||||
| \] | ||||
| \[ | ||||
| 	A_{31} = | ||||
| 	Cofactor\;of\;A_{31} = | ||||
| 	\begin{vmatrix} | ||||
| 		0 & -1 \\ | ||||
| 		4 & 5 | ||||
| 	\end{vmatrix} | ||||
| 	= 4 | ||||
| 	\;\; | ||||
| 	A_{32} = | ||||
| \] | ||||
| \[ | ||||
| 	Cofactor\;of\;A_{32} = | ||||
| 	\begin{vmatrix} | ||||
| 		1 & -1 \\ | ||||
| 		3 & 5 | ||||
| 	\end{vmatrix} | ||||
| 	= 8 | ||||
| 	\;\; | ||||
| 	A_{33} = | ||||
| \] | ||||
| \[ | ||||
| 	Cofactor\;of\;A_{33} = | ||||
| 	\begin{vmatrix} | ||||
| 		1 & 0 \\ | ||||
| 		3 & 4 | ||||
| @@ -297,4 +303,77 @@ Adjoint matrix is the transpose of Cofactor Matrix. | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
|  | ||||
| \section{Question 7} | ||||
|  | ||||
| \( A = | ||||
| \begin{bmatrix} | ||||
| 	0 & 0 & 1 \\ | ||||
| 	0 & 1 & 0 \\ | ||||
| 	1 & 0 & 0 | ||||
| \end{bmatrix} | ||||
| \), show that $A^{-1} = A$. | ||||
|  | ||||
| We know that | ||||
| \[ | ||||
| 	A^{-1} = \frac{adj.(A)}{|A|} | ||||
| \] | ||||
|  | ||||
| \begin{align*} | ||||
| 	Cofactor\;of\;A_{11} &= 0 \\ | ||||
| 	Cofactor\;of\;A_{12} &= 0 \\ | ||||
| 	Cofactor\;of\;A_{13} &= -1 \\ | ||||
| 	Cofactor\;of\;A_{21} &= 0 \\ | ||||
| 	Cofactor\;of\;A_{22} &= -1 \\ | ||||
| 	Cofactor\;of\;A_{23} &= 0 \\ | ||||
| 	Cofactor\;of\;A_{31} &= -1 \\ | ||||
| 	Cofactor\;of\;A_{32} &= 0 \\ | ||||
| 	Cofactor\;of\;A_{33} &= 0 | ||||
| \end{align*} | ||||
|  | ||||
| \[ | ||||
| 	Cofactor\;Matrix = | ||||
| 	\begin{bmatrix} | ||||
| 		0 & 0 & -1 \\ | ||||
| 		0 & -1 & 0 \\ | ||||
| 		-1 & 0 & 0 | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
| \[ | ||||
| 	adj.A = | ||||
| 	\begin{bmatrix} | ||||
| 		0 & 0 & -1 \\ | ||||
| 		0 & -1 & 0 \\ | ||||
| 		-1 & 0 & 0 | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
|  | ||||
| \[ | ||||
| 	|A| = | ||||
| 	\begin{vmatrix} | ||||
| 		0 & 0 & 1 \\ | ||||
| 		0 & 1 & 0 \\ | ||||
| 		1 & 0 & 0 | ||||
| 	\end{vmatrix} | ||||
| 	 = 1 \times | ||||
| 	 \begin{vmatrix} | ||||
| 		 0 & 1 \\ | ||||
| 		 1 & 0 | ||||
| 	 \end{vmatrix} | ||||
| 	 = 1 \times -1 = -1 | ||||
|  \] | ||||
|  | ||||
| \[ | ||||
| 	A^{-1} = \frac{adj.A}{|A|} | ||||
| \] | ||||
| \[ | ||||
| 	A^{-1} = | ||||
| 	\begin{bmatrix} | ||||
| 		0 & 0 & 1 \\ | ||||
| 		0 & 1 & 0 \\ | ||||
| 		1 & 0 & 0 | ||||
| 	\end{bmatrix} | ||||
| \] | ||||
| \[ | ||||
| 	\therefore A^{-1} = A | ||||
| \] | ||||
| \end{document} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user