Add assignment 2 and 3
This commit is contained in:
		
							
								
								
									
										83
									
								
								elements_of_mech/assignment-work-and-heat/assign2.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										83
									
								
								elements_of_mech/assignment-work-and-heat/assign2.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,83 @@ | |||||||
|  | \documentclass{article} | ||||||
|  | \usepackage{amsmath} | ||||||
|  | \usepackage{amssymb} | ||||||
|  | \begin{document} | ||||||
|  | \title{Assignment --- First Law of Thermodynamics} | ||||||
|  | \author{Ahmad Saalim Lone, 2019BCSE017} | ||||||
|  | \date{} | ||||||
|  | \maketitle | ||||||
|  | \section*{Question 1} | ||||||
|  | First law of thermodynamics suggests that $\sum Q = \sum W$. | ||||||
|  | \begin{align*} | ||||||
|  | 	Q_1 + Q_2 + Q_3 &= W_1 + W_2 \\ | ||||||
|  | 	75 - 40 + Q_3 &= -15 + 44 \\ | ||||||
|  | 	Q_3 &= -6 kJ | ||||||
|  | \end{align*} | ||||||
|  | i.e.\ from the system to the surroundings. | ||||||
|  | \section*{Question 2} | ||||||
|  | We know that, | ||||||
|  | \begin{align*} | ||||||
|  | 	Q &= \Delta E + W \\ | ||||||
|  | 	Q &= -50000 + \frac{-1000 \times 3600}{1000} kJ \\ | ||||||
|  | 	Q &= -8600 kJ \\ | ||||||
|  | 	Q &= -8.6 MJ | ||||||
|  | \end{align*} | ||||||
|  | \section*{Question 3} | ||||||
|  | There is no heat transfer, therefore | ||||||
|  | \begin{align*} | ||||||
|  | 	Q &=  \Delta E + W \\ | ||||||
|  | 	W &= - \Delta E - \Delta V \\ | ||||||
|  | 	W &= \int_{1}^{0} C_v \cdot dT \\ | ||||||
|  | 	W &= -0.718 (T_2 - T_1) \\ | ||||||
|  | 	W &= -50.26 \frac{kJ}{kg} \\ | ||||||
|  | 	\text{Total Work} &= 2 \times (-50.26) = -100 kJ | ||||||
|  | \end{align*} | ||||||
|  | \section*{Question 4} | ||||||
|  | \begin{align*} | ||||||
|  | 	1000 &= a + b \times 0.2 \\ | ||||||
|  | 	200 &= a + b \times 1.2 \\ | ||||||
|  | 	b &= -800 \\ | ||||||
|  | 	a &= 1000 + 2 \times 800 = 1160 \\ | ||||||
|  | 	\therefore P &= 1160 - 800 V \\ | ||||||
|  | 	W &= \int_{V_1}^{V_2} P \cdot dV \\ | ||||||
|  | 	  &= \int_{0.2}^{1.2} (1160 - 800V)dV \\ | ||||||
|  | 	  &= 6000 kJ \\ | ||||||
|  | 	V_1 &= 1.5 \times  1000 \times \frac{0.2}{1.5} - 85 \\ | ||||||
|  | 		&= 215 \frac{kJ}{kg} \\ | ||||||
|  | 	V_2 &= 1.5 \times 200 \times \frac{1.2}{1.5} - 85 \\ | ||||||
|  | 		&= 155 \frac{kJ}{kg} \\ | ||||||
|  | 	\Delta V &= V_2 - V_1 \\ | ||||||
|  | 			 &= 40 \frac{kJ}{kg} \\ | ||||||
|  | 	\Delta U &= m \Delta V  = 60 kJ \\ | ||||||
|  | 	Q &= \Delta U + W \\ | ||||||
|  | 	  &= 60 + 600 \\ | ||||||
|  | 	  &= 660 kJ \\ | ||||||
|  | 	U &= 1.5 PV - 85 \frac{kJ}{kg} \\ | ||||||
|  | 	U &= 1.5 \left(\frac{1160 - 800 V}{1.5}\right)V - 85 \frac{kJ}{kg} \\ | ||||||
|  | 	  &= 800 V^2 - 85 \frac{kJ}{kg} \\ | ||||||
|  | 	\frac{\delta U}{\delta V} &= 1160 - 1600 V \\ | ||||||
|  | 	\text{For maximum V,} \\ | ||||||
|  | 	V_1 \rightarrow \frac{\delta U}{\delta V} &= 0 \\ | ||||||
|  | 	V &= 0.725 \\ | ||||||
|  | 	u_{\max} = 335.5 \frac{kJ}{kg} \\ | ||||||
|  | \end{align*} | ||||||
|  | \begin{align*} | ||||||
|  | 	U_{\max} &= 1.5 \times u_{\max} = 503.25 kJ \\ | ||||||
|  | \end{align*} | ||||||
|  | \section*{Question 5} | ||||||
|  | \subsection*{Part a} | ||||||
|  | \begin{align*} | ||||||
|  | 	Q &= \int_{273}^{373} C_p \cdot dT \\ | ||||||
|  | 	t &= T - 273 K \\ | ||||||
|  | 	\therefore t + 100 &= T - 173 \\ | ||||||
|  | 	Q &= \int_{273}^{373} \left(2.093 + \frac{41.87}{T - 173}\right) \cdot dT \\ | ||||||
|  | 	Q &= 238.32 J | ||||||
|  | \end{align*} | ||||||
|  | \subsection*{Part b} | ||||||
|  | \begin{align*} | ||||||
|  | 	Q &= \Delta E + \int p\cdot dV \\ | ||||||
|  | 	\Delta E &= Q - p(V_2 - V_1) \\ | ||||||
|  | 	\Delta E &= 238.32 - 101.325 (0.0024 - 0.002) \times 1000 J \\ | ||||||
|  | 	\Delta E &= 197.79J | ||||||
|  | \end{align*} | ||||||
|  | \end{document} | ||||||
							
								
								
									
										117
									
								
								elements_of_mech/assignment-work-and-heat/assign3.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										117
									
								
								elements_of_mech/assignment-work-and-heat/assign3.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,117 @@ | |||||||
|  | \documentclass{article} | ||||||
|  | \usepackage{amsmath} | ||||||
|  | \usepackage{amssymb} | ||||||
|  | \begin{document} | ||||||
|  | \title{Assignment --- Second Law of Thermodynamics} | ||||||
|  | \author{Ahmad Saalim Lone, 2019BCSE017} | ||||||
|  | \date{} | ||||||
|  | \maketitle | ||||||
|  | \section*{Question 1} | ||||||
|  | We know that the net power output is the difference between the heat input and the heat rejected (cyclic device). | ||||||
|  | \begin{align*} | ||||||
|  | 	W_{net,out} &= Q_H + Q_L \\ | ||||||
|  | 	W_{out} &= 90 - 55 = 35 MW | ||||||
|  | \end{align*} | ||||||
|  | The thermal efficiency is the ratio of net work output and the heat output. | ||||||
|  | \[ | ||||||
|  | 	\eta_{thermal} = W_{out}\frac{W_{out}}{Q_H} =  \frac{35}{90} = 0.3889 | ||||||
|  | \] | ||||||
|  | \section*{Question 2} | ||||||
|  | \begin{align*} | ||||||
|  | 	\text{efficiency} = 1 - \frac{T_1}{T_2}  &= \frac{\text{work input}}{\text{work output}} \;\;\text{(must)}\\ | ||||||
|  | 	1 - \frac{300}{1000} &\implies \frac{6}{1} \;\;\text{(claimed)} \\ | ||||||
|  | 	0.7 &> 0.6 \\ | ||||||
|  | 	\text{output} &> \text{claimed $\implies$ good} | ||||||
|  | \end{align*} | ||||||
|  | $\therefore$ we can agree to this claim. | ||||||
|  | \section*{Question 3} | ||||||
|  | \[ | ||||||
|  | 	\eta = \frac{\text{output}}{\text{input}} = \frac{0.65}{0.65 + 0.4} = 0.619 = 61.9% | ||||||
|  | \] | ||||||
|  | now, | ||||||
|  | \begin{align*} | ||||||
|  | 	\eta &= 1 - \frac{T_2}{T_1} \\ | ||||||
|  | 	T_1 &= \frac{T_2}{1 - \eta} \\ | ||||||
|  | 	T_1 &= 787.5 K | ||||||
|  | \end{align*} | ||||||
|  | $\therefore$, the temperature at which energy is absorbed is 787.5 K | ||||||
|  | \section*{Question 4} | ||||||
|  | \begin{align*} | ||||||
|  | 	\eta &= 1 - \frac{T_1}{T_2} \\ | ||||||
|  | \end{align*} | ||||||
|  | where, | ||||||
|  | \begin{align*} | ||||||
|  | 	\eta &= 0.6 \\ | ||||||
|  | 	T_2 &= 800 K \\ | ||||||
|  | 	T_1 &= T_{sink} \\ | ||||||
|  | 	T_{sink} &= (1 - \eta)T_2 \\ | ||||||
|  | 			  &= 324K | ||||||
|  | \end{align*} | ||||||
|  | Also, | ||||||
|  | \begin{align*} | ||||||
|  | 	\eta &=  \frac{Q_1 - Q_{\text{rejected}}}{Q_1} \\ | ||||||
|  | 	Q_{\text{rejected}} &= Q_1 (1 - \eta) \\ | ||||||
|  | 							 &= 400(1 - 0.6) \\ | ||||||
|  | 							 &= 160 kJ | ||||||
|  | \end{align*} | ||||||
|  | \section*{Question 5} | ||||||
|  | Max COP will be achieved only in a Carnot refrigerator. | ||||||
|  | \[ | ||||||
|  | 	{(COP_{\max})}_{R} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2} = \frac{-20 + 273}{57} = 4.438 | ||||||
|  | \] | ||||||
|  | Minimum Power $\to$ Max COP\@. We know that $P = \frac{Q}{\eta}$. | ||||||
|  | \[ | ||||||
|  | 	P = \frac{3 \times 57}{253} = 0.657 W | ||||||
|  | \] | ||||||
|  | \section*{Question 6} | ||||||
|  | Max COP will be achieved only in a Carnot refrigerator. | ||||||
|  | \begin{align*} | ||||||
|  | 	{(COP)}_{\text{Carnot refrigerator}} &= \frac{T_{low}}{T_{high} - T_{low}} = 1.37 \times 10^{-2} \\ | ||||||
|  | 	{(COP)}_{\text{refrigerator}} &= \frac{Q_L}{W} = 1.37 \times 10^{-2} \\ | ||||||
|  | 	Q_L &= 83.3 \\ | ||||||
|  | \end{align*} | ||||||
|  | \section*{Question 7} | ||||||
|  | For process $1-2$ | ||||||
|  | \begin{align*} | ||||||
|  | 	Q_{1-2} &= U_2 - U_1 + W_{1-2} \\ | ||||||
|  | 	-732 &= U_2 - U_1 - 2.8 \times 3600 \\ | ||||||
|  | 	U_2 - U_1 &= 9348kJ | ||||||
|  | \end{align*} | ||||||
|  | For process $2-1$ | ||||||
|  | \begin{align*} | ||||||
|  | 	Q_{2-1} &= U_1 - U_2 + W_{2-1} \\ | ||||||
|  | 	-732 &= -9348 - 2.8 \times 3600 \\ | ||||||
|  | 	Q_{2-1} &= -708 kJ | ||||||
|  | \end{align*} | ||||||
|  | Now, | ||||||
|  | \[ | ||||||
|  | 	Q_{2-1} = U_1 - U_2 + W_{2-1} | ||||||
|  | \] | ||||||
|  | For maximum work, $Q_{2-1} = 0$. | ||||||
|  | \[ | ||||||
|  | 	\therefore {(W_{2-1})}_{\max} = U_2 - U_1 = 9348kJ | ||||||
|  | \] | ||||||
|  | \section*{Question 8} | ||||||
|  | \begin{align*} | ||||||
|  | 	{(COP)}_R &= \frac{268}{298 - 268} = 8.933 \\ | ||||||
|  | 	{(COP)}_R &= \frac{5}{W} \\ | ||||||
|  | 	W &= 0.56KW | ||||||
|  | \end{align*} | ||||||
|  | \section*{Question 9} | ||||||
|  | \begin{align*} | ||||||
|  | 	\eta &= 1 - \frac{273+60}{273+671} = 0.64725 \\ | ||||||
|  | 	\eta &= 0.3236 \\ | ||||||
|  | 	\implies 1 - 0.3236 &= 0.6764 \\ | ||||||
|  | 	\text{Ideal COP} &= \frac{305.2}{305.2 - 266.4} = 7.866 \\ | ||||||
|  | 	\text{Actual COP} &= 3.923 = \frac{Q_3}{W} \\ | ||||||
|  | 	if \;Q_3 &= 1kJ \\ | ||||||
|  | 	\therefore W &= \frac{Q_3}{3.923} = 0.2549kJ \\ | ||||||
|  | 	W &= Q_{\text{output}} - Q_{\text{input}} = \frac{1}{3.923} Q_1 - 0.6764Q_1 = 0.2549 \\ | ||||||
|  | 	Q_{\text{out}} &= \frac{0.2549}{1 - 0.6764} = 0.7877 kJ \\ | ||||||
|  | \end{align*} | ||||||
|  | \section*{Question 10} | ||||||
|  | \begin{align*} | ||||||
|  | 	\frac{10}{W} &= \frac{293}{293-273} \\ | ||||||
|  | 	or\;W &= 683 W | ||||||
|  | \end{align*} | ||||||
|  | \end{document} | ||||||
		Reference in New Issue
	
	Block a user