Add assignment three and four
This commit is contained in:
parent
7f7a385591
commit
c22f140ad5
|
@ -0,0 +1,115 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{siunitx}
|
||||
\begin{document}
|
||||
\title{Engineering Mechanics}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{}
|
||||
\maketitle
|
||||
\section*{Question 1}
|
||||
Calculate Reactions:
|
||||
\begin{align*}
|
||||
\sum M_J &= 0 \\
|
||||
(12 kN)(4.8) + (12 kN)(2.4) - B(9.6) &= 0 \\
|
||||
B &= 9 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
9 kN - 12 kN - 12 kN + J &= 0 \\
|
||||
J &= 15kN
|
||||
\end{align*}
|
||||
Member CD:\@
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
9 kN + F_{CD} &= 0 \\
|
||||
F_{CD} &= 9 kN \to \text{compression}
|
||||
\end{align*}
|
||||
Member DF:\@
|
||||
\begin{align*}
|
||||
\sum M_c &= 0 \\
|
||||
F_{DF}1.8 m - 9kN \times 2.4m &= 0 \\
|
||||
F_{DF} &= 12kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\section*{Question 2}
|
||||
Reactions:\@
|
||||
\[
|
||||
A = N = 0
|
||||
\]
|
||||
DF member:\@
|
||||
\begin{align*}
|
||||
\sum M_E &= 0 \\
|
||||
(16 kN)(6m) - \frac{3}{5} F_{DF} (4m) &= 0 \\
|
||||
F_{DF} &= 40 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
|
||||
EF member:\@
|
||||
\begin{align*}
|
||||
\sum F&= 0 \\
|
||||
16 kN \sin{\beta} - F_{EF} \cos{\beta} &= 0 \\
|
||||
F_{EF} &= 16 \tan{\beta} \\
|
||||
&= 12 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
|
||||
EG member:\@
|
||||
\begin{align*}
|
||||
\sum M_F &= 0 \\
|
||||
16kN \times 9m + \frac{4}{5}F_{EG} \times 3m &= 0 \\
|
||||
F_{EG} &= -60 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\section*{Question 3}
|
||||
Reactions
|
||||
\begin{align*}
|
||||
\sum M_k &= 0 \\
|
||||
36\times 2.4 - B \times 13.5 + 20 \times 9 + 20 \times 4.5 &= 0 \\
|
||||
B &= 26.4kN \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
K_x &= 36 \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
26.4 - 20 -20 + K_y &= 0 \\
|
||||
K_y &= 13.6 kN \uparrow \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum M_C &= 0 \\
|
||||
36 \times 1.2 - 26.4 \times 2.25 - F_{AD} \times 1.2 &= 0 \\
|
||||
F_{AD} &= 13.5 kN \to \text{compression} \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum M_A &= 0 \\
|
||||
\left( \frac{8}{17}F_{CD}\right)(4.5) &= 0 \\
|
||||
F_{CD} &= 0 \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum M_D &= 9 \\
|
||||
\frac{15}{17} \times F_{CE} \times 2.4 - 26.4 \times 4.5 &= 0 \\
|
||||
F_{CE} &= 56.1 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\section*{Question 4}
|
||||
|
||||
Support reactions
|
||||
\begin{align*}
|
||||
\sum M_I &= 0 \\
|
||||
2\times 12 + 5\times 8 3\times 6 + 2\times 4 - A_y \times 16 &= 0 \\
|
||||
A_y &= 5.625 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum A_x &= 0 \\
|
||||
A_x &= 0
|
||||
\end{align*}
|
||||
Method of joints: By inspection, members BN, NC, DO, OC, HJ, LE \& JG are zero force members \\
|
||||
Method of sections:
|
||||
\begin{align*}
|
||||
\sum M_M &= 0 \\
|
||||
4F_{CD} - 5.625 \times 4 &= 0 \\
|
||||
F_{CD} &= 5.625 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum M_A &= 0 \\
|
||||
4F_{CM} - 2\times 4 &= 0 \\
|
||||
F_{CM} &= 2 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\end{document}
|
|
@ -0,0 +1,284 @@
|
|||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{siunitx}
|
||||
\begin{document}
|
||||
\title{Engineering Mechanics}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{}
|
||||
\maketitle
|
||||
\section*{Question 1}
|
||||
Applying the equations of the equilibrium to the FBD of the entire truss, we have
|
||||
\begin{align*}
|
||||
\sum M_A &= 0 \\
|
||||
N_C (2 + 2) - 4(2) - 3(1.5) &= 0 \\
|
||||
N_C &= 3.125 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
3 - A_x &= 0 \\
|
||||
A_x &= 3 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
A_y + 3.125 - 4 &= 0 \\
|
||||
A_y &= 0.875 kN
|
||||
\end{align*}
|
||||
Method of joints \\
|
||||
Joint C:\@ Just assume it to be in equilibrium
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
3.125 - F_{CD} \frac{3}{5} &= 0 \\
|
||||
F_{CD} &= 5.21 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
5.208 \times \frac{4}{5} - F_{CB} &= 0 \\
|
||||
F_{CB} &= 4.17kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint A:\@
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
0.875 - F_{AD} \times \frac{3}{5} &= 0 \\
|
||||
F_{AD} &= 1.46 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{AB} - 3 - 1.458 \times \frac{4}{5} &= 0 \\
|
||||
F_{AB} &= 4.167 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint B
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{BD} &= 4 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
4.167 - 4.167 &= 0
|
||||
\end{align*}
|
||||
\section*{Question 2}
|
||||
Analyze equilibrium of joint D, C \& E.
|
||||
Joint D
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{DE} \times \frac{3}{5} - 600 &= 0 \\
|
||||
F_{DE} &= 1 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
1000 \times \frac{4}{5} - F_{DC} &= 0 \\
|
||||
F_{DC} &= 800 N \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint C
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{CE} &= 900 N \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{CB} &= 800 N \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint E
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{EB} &= 750 N \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{BA} &= 1.75 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\section*{Question 3}
|
||||
Joint A
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{AL} &= 28.28 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{AB} &= 20 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint B
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{BC} &= 20 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{BL} &= 0
|
||||
\end{align*}
|
||||
Joint L
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{LC} &= 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{LK} &= 28.28 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
Joint C
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{CD} &= 20 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{CK} &= 10 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint K
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{KD} &= 7.454 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{KJ} &= 23.57 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
Joint J
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{IJ} &= 23.57 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{JD} &= 33.3 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Now we know that there exists symmetry,
|
||||
\begin{gather*}
|
||||
F_{AL} = F_{GH} = F{LK} = F{HI} = 28.3 kN \\
|
||||
F_{AB} = F_{GF} = F_{BC} = F_{FE} = F_{CD} = F_{ED} = 20 kN \\
|
||||
F_{BL} = F_{FH} = F_{LC} = F_{HE} = 0 \\
|
||||
F_{CK} = F_{EI} = 10 kN \\
|
||||
F_{KJ} = F_{IJ} = 23.6 kN \\
|
||||
F_{KD} = F_{ID} = 7.45 kN
|
||||
\end{gather*}
|
||||
\section*{Question 4}
|
||||
To evaluate support reactions
|
||||
\begin{align*}
|
||||
\sum M_E &= 0 \\
|
||||
A_y &= \frac{4}{3} P
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
E_y &= \frac{4}{3} P
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
E_x &= P
|
||||
\end{align*}
|
||||
Methods of joints: By inspecting joint C, members CB \& CD are zero force members. Hence
|
||||
\[
|
||||
F_{CB} = F_{CD} = 0
|
||||
\]
|
||||
Joint A
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{AB} &= 2.40 P \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{AF} &= 2P \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint B
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
2.404P \times \frac{1.5}{\sqrt{3.25}} - P - F_{BF} \times \frac{0.5}{\sqrt{1.25}} - F_{BD} \times \frac{0.5}{\sqrt{1.25}} &= 0 \\
|
||||
P - 0.447 F_{BF} - 0.447 F_{BD} &= 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
2.404P \times \frac{1}{\sqrt{3.25}} - F_{BF} \times \frac{1}{\sqrt{1.25}} + F_{BD} \times \frac{1}{\sqrt{1.25}} &= 0 \\
|
||||
1.33P - 0.8944 F_{BF} + 0.8944 F_{BD} &= 0
|
||||
\end{align*}
|
||||
Solving the above equations, we get
|
||||
\begin{align*}
|
||||
F_{BD} &= 0.3727 P \to \text{Compression}\\
|
||||
F_{BF} &= 1.863 P \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint D
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{DE} &= 0.3727 P \to \text{Compression}
|
||||
\end{align*}
|
||||
\section*{Question 5}
|
||||
FBD of Joint A
|
||||
\begin{gather*}
|
||||
\frac{F_{AB}}{2.29} = \frac{F_{AC}}{2.29} = \frac{1.2}{1.2} kN \\
|
||||
F_{AB} = 2.29 kN \to \text{Tension} \\
|
||||
F_{AC} = 2.29 kN \to \text{Compression}
|
||||
\end{gather*}
|
||||
FBD of Joint F
|
||||
\begin{gather*}
|
||||
\frac{F_{DF}}{2.29} = \frac{F_{EF}}{2.29} = \frac{1.2}{1.2} kN \\
|
||||
F_{DF} = 2.29 kN \to \text{Tension} \\
|
||||
F_{EF} = 2.29 kN \to \text{Compression}
|
||||
\end{gather*}
|
||||
FBD of Joint D
|
||||
\begin{gather*}
|
||||
\frac{F_{BD}}{2.21} = \frac{F_{DE}}{0.6} = \frac{2.29}{2.29} kN \\
|
||||
F_{DE} = 0.6 kN \to \text{Compression}\\
|
||||
F_{EF} = 2.21 kN \to \text{Tension}
|
||||
\end{gather*}
|
||||
FBD of Joint C
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{CE} &= 2.21 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{CH} &= 1.2 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
FBD of Joint E
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{BH} &= 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{EJ} &= 1.2 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\section*{Question 6}
|
||||
Zero Force Members
|
||||
Analyzing joint F:\@ Note that $DF$ and $EF$ are zero force members.
|
||||
\[
|
||||
F_{DF} = F_{EF} = 0
|
||||
\]
|
||||
Analyzing joint D:\@ Note that $BD$ and $DE$ are zero force members.
|
||||
\[
|
||||
F_{BD} = F_{DE} = 0
|
||||
\]
|
||||
FBD of joint A
|
||||
\begin{gather*}
|
||||
\frac{F_{AB}}{2.29} = \frac{F_{AC}}{2.29} = \frac{1.2}{1.2} kN \\
|
||||
F_{AB} = 2.29 kN \to \text{Tension}\\
|
||||
F_{AC} = 2.29 kN \to \text{Compression}
|
||||
\end{gather*}
|
||||
FBD of joint B
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{BE} &= 2.7625 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{BC} &= 2.25 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
FBD of joint C
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{CE} &= 2.21 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{CH} &= 2.86 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
FBD of joint E
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{EH} &= 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
f_{EJ} &= 1.657 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue