Add mechanical engineering project.
This commit is contained in:
		
							
								
								
									
										
											BIN
										
									
								
								engg_mech/assignment/images/t_one_1.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								engg_mech/assignment/images/t_one_1.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 84 KiB | 
							
								
								
									
										
											BIN
										
									
								
								engg_mech/assignment/images/t_one_2.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								engg_mech/assignment/images/t_one_2.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| After Width: | Height: | Size: 30 KiB | 
							
								
								
									
										227
									
								
								engg_mech/assignment/t_one.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										227
									
								
								engg_mech/assignment/t_one.tex
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,227 @@ | ||||
| \documentclass{article} | ||||
| \usepackage{amsmath} | ||||
| \usepackage{amssymb} | ||||
| \usepackage{siunitx} | ||||
| \usepackage{graphicx} | ||||
| \usepackage{wrapfig} | ||||
| \graphicspath{{./images/}} | ||||
| \begin{document} | ||||
| \title{Engineering Mechanics} | ||||
| \author{Ahmad Saalim Lone, 2019BCSE017} | ||||
| \date{14 May, 2020} | ||||
| \maketitle | ||||
| \section*{Question 1} | ||||
|  | ||||
| Triangle law of vector addition states that when two vectors are represented by | ||||
| two sides of a triangle in magnitude and direction taken in same order then | ||||
| third side of that triangle represents in magnitude and direction the resultant | ||||
| of the vectors. | ||||
|  | ||||
| \begin{align*} | ||||
| 	P &= 48 N \\ | ||||
| 	Q &= 60 N \\ | ||||
| 	R^2 &= P^2 - Q^2 - 2PQ\cos{\ang{150}} \\ | ||||
| 	R^2 &= 48^2 + 60^2 - 2\times 48 \times 60 \times (-0.866) \\ | ||||
| 	R^2 &= 10892 \\ | ||||
| 	R &= 104.36 \\ | ||||
| 	\cos\theta &= \frac{{P^2 + R^2 - Q^2}}{2PR} \\ | ||||
| 	\theta &= \ang{16.70} \\ | ||||
| 	\text{R makes an angle of }(\ang{85} - \ang{16.70}) &= \ang{68.3} | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 2} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\text{For the $A = 80N$ force} \\ | ||||
| 	A_x &= 80 \times \cos{\ang{40}} \\ | ||||
| 		&= 61.28N \\ | ||||
| 	A_y &= 80 \times \sin{\ang{40}} \\ | ||||
| 		&= 51.42N \\ | ||||
| \end{align*} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\text{For the $B = 120N$ force} \\ | ||||
| 	B_x &= 120 \times \cos{\ang{70}} \\ | ||||
| 		&= 41.04N \\ | ||||
| 	B_y &= 120 \times \sin{\ang{70}} \\ | ||||
| 		&= 112.76N \\ | ||||
| \end{align*} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\text{For the $C = 150N$ force} \\ | ||||
| 	C_x &= 150 \times \cos{\ang{165}} \\ | ||||
| 		&= -122.87N \\ | ||||
| 	C_y &= 150 \times \sin{\ang{165}} \\ | ||||
| 		&= 86.036N \\ | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 3} | ||||
|  | ||||
| \begin{figure*}[h] | ||||
| 	\centering | ||||
| 	\includegraphics[width=0.5\textwidth]{t_one_1} | ||||
| \end{figure*} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\cos{\alpha} &= \frac{600}{650} \\ | ||||
| 				 &= 0.923 \\ | ||||
| 	\sin{\alpha} &= \frac{250}{650} \\ | ||||
| 				 &= 0.384 | ||||
| \end{align*} | ||||
| \begin{align*} | ||||
| 	T_1 + T_2 \sin \alpha + 360 \sin\ang{37} &= 480 N \\ | ||||
| 	T_2 \cos \alpha &= 360 \cos \ang{37} | ||||
| \end{align*} | ||||
|  | ||||
| From here, | ||||
| \begin{align*} | ||||
| 	T_1 = \text{The tension in cable } BC  &= 143.724 N \\ | ||||
| 	T_2 = \text{The tension in cable } AC  &= 311.5 N | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 4} | ||||
|  | ||||
| Draw Free body diagram of the lower pulley. | ||||
| \begin{figure*}[h] | ||||
| 	\centering | ||||
| 	\includegraphics[width=0.5\textwidth]{t_one_2} | ||||
| \end{figure*} | ||||
|  | ||||
| \begin{align*} | ||||
| 	\cos{\theta} &= \frac{0.75}{2.514} = 0.3 \\ | ||||
| 	\sin{\theta} &= \frac{2.4}{2.514} = 0.954 \\ | ||||
| 	2P \cos{\theta} &= P \cos{\alpha} \\ | ||||
| 	2P \sin{\theta} + P\sin{\alpha} &= mg \\ | ||||
| 	\text{From this we get} \\ | ||||
| 	P &= 738.825 N \\ | ||||
| 	\alpha &= 53.13N | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 5} | ||||
|  | ||||
| Moments about A | ||||
| \begin{align*} | ||||
| 	F_1 &= 250 \cos{\ang{30}} \times 2 = 433 Nm \\ | ||||
| 	F_2 &= 300 \sin{\ang{60}} \times 5 = 1299.04 Nm \\ | ||||
| 	F_3 &= 500 \times 1 Nm | ||||
| \end{align*} | ||||
|  | ||||
| Moments about B | ||||
| \begin{align*} | ||||
| 	F_1 &= 0 Nm \\ | ||||
| 	F_2 &= 300 \cos{\ang{60}} \times 4 = 600 Nm \\ | ||||
| 	F_3 &= 0 Nm | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 6} | ||||
|  | ||||
| \begin{center} | ||||
| Tension in $AD$ is $481N$ \\ | ||||
| Tension in $AB$ is $T_1N$ \\ | ||||
| Tension in $AC$ is $T_2N$ \\ | ||||
| Length of $AD$ is $6.5m$ \\ | ||||
| Length of $AB$ is $7m$ \\ | ||||
| Length of $AC$ is $7.4m$ \\ | ||||
| \end{center} | ||||
|  | ||||
| On vertical components | ||||
|  | ||||
| \begin{align*} | ||||
| 	P &= 481 \cos{\ang{30.51}} + T_1 \cos{\ang{35.87}} + T_2 \frac{5.6}{7.4} \\ | ||||
| 	P &= 414.4 + 0.8 T_1 + 0.75 T_2 | ||||
| \end{align*} | ||||
|  | ||||
| On horizontal components | ||||
|  | ||||
| \begin{align*} | ||||
| 	T_1 \sin{\ang{36.87}} N &= T_2 \frac{4.837}{7.4} \sin{\ang{29.74}}N \\ | ||||
| 	0.6 \times T_1 &= 0.324 \times T_2 \\ | ||||
| 	481 \sin{\ang{30.51}} N &= T_2 \frac{4.837}{7.4} \cos{\ang{29.74}} N \\ | ||||
| 	242.2 &= 0.567 \times T_2 \\ | ||||
| 	T_2 &= 430.6 \\ | ||||
| 	T_1 &= 232.57 \\ | ||||
| 	P &= 414.4 + 0.8 \times 242.57 + 0.75 \times 430.6 \\ | ||||
| 	P &= 923.4 N | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 7} | ||||
| \begin{align*} | ||||
| 	\sum{F_A} &= 0 \\ | ||||
| 	T_{AB} + T_{AC} + T_{AD} + P &= 0 \\ | ||||
| 								 & \text{where P has only one direction that is $\hat{\imath}$} \\ | ||||
| 	\overrightarrow{AB} &= -(960mm)\hat{\imath} - (240mm)\hat{\jmath} + (380mm)\hat{k} \\ | ||||
| 	AB &= 1060 mm \\ | ||||
| 	\overrightarrow{AC} &= -(960mm)\hat{\imath} - (240mm)\hat{\jmath} - (320mm)\hat{k}\\ | ||||
| 	AC &= 1040 mm \\ | ||||
| 	\overrightarrow{AD} &= - (960mm)\hat{\imath} + (720mm)\hat{\jmath} - (220mm)\hat{k}\\ | ||||
| 	AD &= 1220 mm \\ | ||||
| 	\overrightarrow{T_{AB}} &= T_{AB} \cdot \hat{AB} = T_{AB} \left(-\frac{48}{53} \hat{\imath} - \frac{12}{53} \hat{\jmath} + \frac{19}{53} \hat{k} \right) \\ | ||||
| 	\overrightarrow{T_{AC}} &= T_{AC} \cdot \hat{AC} = T_{AC} \left(-\frac{12}{13} \hat{\imath} - \frac{3}{13} \hat{\jmath} - \frac{4}{13} \hat{k}\right) \\ | ||||
| 	\overrightarrow{T_{AD}} &= T_{AD} \cdot \hat{AD} = \frac{305}{1220} \times \overrightarrow{AD} = (-240 \hat{\imath} + 180 \hat{\jmath} - 55 \hat{k}) N | ||||
| \end{align*} | ||||
|  | ||||
| We know | ||||
| \begin{align*} | ||||
| 	\sum F_A &= 0 \\ | ||||
| 	-\frac{48}{53}T_{AB} - \frac{12}{13} T_{AC} - 240 + P &= 0 \;\text{(X-axis)} \\ | ||||
| 	-\frac{12}{53}T_{AB} -\frac{3}{13} T_{AC} + 180 &= 0  \;\text{(Y-axis)} \\ | ||||
| 	-\frac{19}{53}T_{AB} + \frac{4}{13} T_{AC} + 55 &= 0\;\text{(Z-axis)} \\ | ||||
| \end{align*} | ||||
|  | ||||
| By solving these equations, we get | ||||
|  | ||||
| \begin{align*} | ||||
| 	T_{AB} &= 446.71 N \\ | ||||
| 	T_{AC} &= 341.71 N \\ | ||||
| 	P &= 960 N | ||||
| \end{align*} | ||||
|  | ||||
| \section*{Question 8} | ||||
|  | ||||
| Calculate the unit vector along each rope just like previous question. \\ | ||||
| Coordinates of point $A, B, C, D$ | ||||
| \begin{align*} | ||||
| 	A &= 4 \hat{k} m \\ | ||||
| 	B &= -1.5 \hat{\imath} m - 2 \hat{\jmath} m \\ | ||||
| 	C &= 2 \hat{\imath} m + 3 \hat{\jmath} m \\ | ||||
| 	D &= 2.5 \hat{\jmath} m | ||||
| \end{align*} | ||||
|  | ||||
| Position vectors of each rope is $reference = 0 \hat{\imath} + 0 \hat{\jmath} + 6 \hat{k}$ | ||||
| \begin{align*} | ||||
| 	\overrightarrow{r_{AB}} &= -1.5 \hat{\imath} - 6 \hat{k} \\ | ||||
| 	|r_{AB}| &= 6.5 \\ | ||||
| 	\overrightarrow{r_{AC}} &= 2 \hat{\imath} - 3 \hat{\jmath} - 6 \hat{k} \\ | ||||
| 	|r_{AC}| &= 7 \\ | ||||
| 	\overrightarrow{r_{AD}} &= 2.5 \hat{\jmath} - 6 \hat{k} \\ | ||||
| 	|r_{AD}| &= 6.5 | ||||
| \end{align*} | ||||
|  | ||||
| Now direction of forces are along unit vectors: | ||||
|  | ||||
| \begin{align*} | ||||
| 	\hat{r_{AB}} &= -\frac{1.5}{6.5} \hat{\imath} - \frac{6}{6.5} \hat{k} \\ | ||||
| 	\hat{r_{AC}} &= \frac{2}{7} \hat{\imath} - \frac{3}{7} \hat{\jmath} - \frac{6}{7} \hat{k} \\ | ||||
| 	\hat{r_{AD}} &= \frac{2.5}{6.5} \hat{\jmath} - \frac{6}{7} \hat{k} | ||||
| \end{align*} | ||||
|  | ||||
| \[ | ||||
| 	\sum F_A = 0 | ||||
| \] | ||||
| So, | ||||
|  | ||||
| \begin{align*} | ||||
| 	-0.231 F_{AB} + 0.286 F_{AC} &= 0 \\ | ||||
| 	-0.308 F_{AB} - 0.429 F_{AC} + 0.385 F_{AD} &= 0 \\ | ||||
| 	-0.923 F_{AB} - 0.857 F_{AC} - 0.923 F_{AD} &= -800 | ||||
| \end{align*} | ||||
|  | ||||
| On solving these three equations, we get | ||||
|  | ||||
| \begin{align*} | ||||
| 	F_{AB} &= 251.2N \\ | ||||
| 	F_{AC} &= 202.9N \\ | ||||
| 	F_{AD} &= 427.1 N | ||||
| \end{align*} | ||||
|  | ||||
| \end{document} | ||||
		Reference in New Issue
	
	Block a user