Compare commits

...

4 Commits

Author SHA1 Message Date
c22f140ad5 Add assignment three and four 2020-09-03 17:26:16 +05:30
7f7a385591 Add assignment 2 and 3 2020-08-18 17:57:04 +05:30
9ff4a1562a Add assignment 2 engg_mech 2020-05-18 18:11:20 +05:30
d2452e9f5c Fix typo 2020-05-17 18:52:14 +05:30
6 changed files with 735 additions and 1 deletions

View File

@@ -0,0 +1,83 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\title{Assignment --- First Law of Thermodynamics}
\author{Ahmad Saalim Lone, 2019BCSE017}
\date{}
\maketitle
\section*{Question 1}
First law of thermodynamics suggests that $\sum Q = \sum W$.
\begin{align*}
Q_1 + Q_2 + Q_3 &= W_1 + W_2 \\
75 - 40 + Q_3 &= -15 + 44 \\
Q_3 &= -6 kJ
\end{align*}
i.e.\ from the system to the surroundings.
\section*{Question 2}
We know that,
\begin{align*}
Q &= \Delta E + W \\
Q &= -50000 + \frac{-1000 \times 3600}{1000} kJ \\
Q &= -8600 kJ \\
Q &= -8.6 MJ
\end{align*}
\section*{Question 3}
There is no heat transfer, therefore
\begin{align*}
Q &= \Delta E + W \\
W &= - \Delta E - \Delta V \\
W &= \int_{1}^{0} C_v \cdot dT \\
W &= -0.718 (T_2 - T_1) \\
W &= -50.26 \frac{kJ}{kg} \\
\text{Total Work} &= 2 \times (-50.26) = -100 kJ
\end{align*}
\section*{Question 4}
\begin{align*}
1000 &= a + b \times 0.2 \\
200 &= a + b \times 1.2 \\
b &= -800 \\
a &= 1000 + 2 \times 800 = 1160 \\
\therefore P &= 1160 - 800 V \\
W &= \int_{V_1}^{V_2} P \cdot dV \\
&= \int_{0.2}^{1.2} (1160 - 800V)dV \\
&= 6000 kJ \\
V_1 &= 1.5 \times 1000 \times \frac{0.2}{1.5} - 85 \\
&= 215 \frac{kJ}{kg} \\
V_2 &= 1.5 \times 200 \times \frac{1.2}{1.5} - 85 \\
&= 155 \frac{kJ}{kg} \\
\Delta V &= V_2 - V_1 \\
&= 40 \frac{kJ}{kg} \\
\Delta U &= m \Delta V = 60 kJ \\
Q &= \Delta U + W \\
&= 60 + 600 \\
&= 660 kJ \\
U &= 1.5 PV - 85 \frac{kJ}{kg} \\
U &= 1.5 \left(\frac{1160 - 800 V}{1.5}\right)V - 85 \frac{kJ}{kg} \\
&= 800 V^2 - 85 \frac{kJ}{kg} \\
\frac{\delta U}{\delta V} &= 1160 - 1600 V \\
\text{For maximum V,} \\
V_1 \rightarrow \frac{\delta U}{\delta V} &= 0 \\
V &= 0.725 \\
u_{\max} = 335.5 \frac{kJ}{kg} \\
\end{align*}
\begin{align*}
U_{\max} &= 1.5 \times u_{\max} = 503.25 kJ \\
\end{align*}
\section*{Question 5}
\subsection*{Part a}
\begin{align*}
Q &= \int_{273}^{373} C_p \cdot dT \\
t &= T - 273 K \\
\therefore t + 100 &= T - 173 \\
Q &= \int_{273}^{373} \left(2.093 + \frac{41.87}{T - 173}\right) \cdot dT \\
Q &= 238.32 J
\end{align*}
\subsection*{Part b}
\begin{align*}
Q &= \Delta E + \int p\cdot dV \\
\Delta E &= Q - p(V_2 - V_1) \\
\Delta E &= 238.32 - 101.325 (0.0024 - 0.002) \times 1000 J \\
\Delta E &= 197.79J
\end{align*}
\end{document}

View File

@@ -0,0 +1,117 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\title{Assignment --- Second Law of Thermodynamics}
\author{Ahmad Saalim Lone, 2019BCSE017}
\date{}
\maketitle
\section*{Question 1}
We know that the net power output is the difference between the heat input and the heat rejected (cyclic device).
\begin{align*}
W_{net,out} &= Q_H + Q_L \\
W_{out} &= 90 - 55 = 35 MW
\end{align*}
The thermal efficiency is the ratio of net work output and the heat output.
\[
\eta_{thermal} = W_{out}\frac{W_{out}}{Q_H} = \frac{35}{90} = 0.3889
\]
\section*{Question 2}
\begin{align*}
\text{efficiency} = 1 - \frac{T_1}{T_2} &= \frac{\text{work input}}{\text{work output}} \;\;\text{(must)}\\
1 - \frac{300}{1000} &\implies \frac{6}{1} \;\;\text{(claimed)} \\
0.7 &> 0.6 \\
\text{output} &> \text{claimed $\implies$ good}
\end{align*}
$\therefore$ we can agree to this claim.
\section*{Question 3}
\[
\eta = \frac{\text{output}}{\text{input}} = \frac{0.65}{0.65 + 0.4} = 0.619 = 61.9%
\]
now,
\begin{align*}
\eta &= 1 - \frac{T_2}{T_1} \\
T_1 &= \frac{T_2}{1 - \eta} \\
T_1 &= 787.5 K
\end{align*}
$\therefore$, the temperature at which energy is absorbed is 787.5 K
\section*{Question 4}
\begin{align*}
\eta &= 1 - \frac{T_1}{T_2} \\
\end{align*}
where,
\begin{align*}
\eta &= 0.6 \\
T_2 &= 800 K \\
T_1 &= T_{sink} \\
T_{sink} &= (1 - \eta)T_2 \\
&= 324K
\end{align*}
Also,
\begin{align*}
\eta &= \frac{Q_1 - Q_{\text{rejected}}}{Q_1} \\
Q_{\text{rejected}} &= Q_1 (1 - \eta) \\
&= 400(1 - 0.6) \\
&= 160 kJ
\end{align*}
\section*{Question 5}
Max COP will be achieved only in a Carnot refrigerator.
\[
{(COP_{\max})}_{R} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2} = \frac{-20 + 273}{57} = 4.438
\]
Minimum Power $\to$ Max COP\@. We know that $P = \frac{Q}{\eta}$.
\[
P = \frac{3 \times 57}{253} = 0.657 W
\]
\section*{Question 6}
Max COP will be achieved only in a Carnot refrigerator.
\begin{align*}
{(COP)}_{\text{Carnot refrigerator}} &= \frac{T_{low}}{T_{high} - T_{low}} = 1.37 \times 10^{-2} \\
{(COP)}_{\text{refrigerator}} &= \frac{Q_L}{W} = 1.37 \times 10^{-2} \\
Q_L &= 83.3 \\
\end{align*}
\section*{Question 7}
For process $1-2$
\begin{align*}
Q_{1-2} &= U_2 - U_1 + W_{1-2} \\
-732 &= U_2 - U_1 - 2.8 \times 3600 \\
U_2 - U_1 &= 9348kJ
\end{align*}
For process $2-1$
\begin{align*}
Q_{2-1} &= U_1 - U_2 + W_{2-1} \\
-732 &= -9348 - 2.8 \times 3600 \\
Q_{2-1} &= -708 kJ
\end{align*}
Now,
\[
Q_{2-1} = U_1 - U_2 + W_{2-1}
\]
For maximum work, $Q_{2-1} = 0$.
\[
\therefore {(W_{2-1})}_{\max} = U_2 - U_1 = 9348kJ
\]
\section*{Question 8}
\begin{align*}
{(COP)}_R &= \frac{268}{298 - 268} = 8.933 \\
{(COP)}_R &= \frac{5}{W} \\
W &= 0.56KW
\end{align*}
\section*{Question 9}
\begin{align*}
\eta &= 1 - \frac{273+60}{273+671} = 0.64725 \\
\eta &= 0.3236 \\
\implies 1 - 0.3236 &= 0.6764 \\
\text{Ideal COP} &= \frac{305.2}{305.2 - 266.4} = 7.866 \\
\text{Actual COP} &= 3.923 = \frac{Q_3}{W} \\
if \;Q_3 &= 1kJ \\
\therefore W &= \frac{Q_3}{3.923} = 0.2549kJ \\
W &= Q_{\text{output}} - Q_{\text{input}} = \frac{1}{3.923} Q_1 - 0.6764Q_1 = 0.2549 \\
Q_{\text{out}} &= \frac{0.2549}{1 - 0.6764} = 0.7877 kJ \\
\end{align*}
\section*{Question 10}
\begin{align*}
\frac{10}{W} &= \frac{293}{293-273} \\
or\;W &= 683 W
\end{align*}
\end{document}

View File

@@ -0,0 +1,115 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{siunitx}
\begin{document}
\title{Engineering Mechanics}
\author{Ahmad Saalim Lone, 2019BCSE017}
\date{}
\maketitle
\section*{Question 1}
Calculate Reactions:
\begin{align*}
\sum M_J &= 0 \\
(12 kN)(4.8) + (12 kN)(2.4) - B(9.6) &= 0 \\
B &= 9 kN
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
9 kN - 12 kN - 12 kN + J &= 0 \\
J &= 15kN
\end{align*}
Member CD:\@
\begin{align*}
\sum F_y &= 0 \\
9 kN + F_{CD} &= 0 \\
F_{CD} &= 9 kN \to \text{compression}
\end{align*}
Member DF:\@
\begin{align*}
\sum M_c &= 0 \\
F_{DF}1.8 m - 9kN \times 2.4m &= 0 \\
F_{DF} &= 12kN \to \text{Tension}
\end{align*}
\section*{Question 2}
Reactions:\@
\[
A = N = 0
\]
DF member:\@
\begin{align*}
\sum M_E &= 0 \\
(16 kN)(6m) - \frac{3}{5} F_{DF} (4m) &= 0 \\
F_{DF} &= 40 kN \to \text{Tension}
\end{align*}
EF member:\@
\begin{align*}
\sum F&= 0 \\
16 kN \sin{\beta} - F_{EF} \cos{\beta} &= 0 \\
F_{EF} &= 16 \tan{\beta} \\
&= 12 kN \to \text{Tension}
\end{align*}
EG member:\@
\begin{align*}
\sum M_F &= 0 \\
16kN \times 9m + \frac{4}{5}F_{EG} \times 3m &= 0 \\
F_{EG} &= -60 kN \to \text{Compression}
\end{align*}
\section*{Question 3}
Reactions
\begin{align*}
\sum M_k &= 0 \\
36\times 2.4 - B \times 13.5 + 20 \times 9 + 20 \times 4.5 &= 0 \\
B &= 26.4kN \\
\end{align*}
\begin{align*}
\sum F_x &= 0 \\
K_x &= 36 \\
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
26.4 - 20 -20 + K_y &= 0 \\
K_y &= 13.6 kN \uparrow \\
\end{align*}
\begin{align*}
\sum M_C &= 0 \\
36 \times 1.2 - 26.4 \times 2.25 - F_{AD} \times 1.2 &= 0 \\
F_{AD} &= 13.5 kN \to \text{compression} \\
\end{align*}
\begin{align*}
\sum M_A &= 0 \\
\left( \frac{8}{17}F_{CD}\right)(4.5) &= 0 \\
F_{CD} &= 0 \\
\end{align*}
\begin{align*}
\sum M_D &= 9 \\
\frac{15}{17} \times F_{CE} \times 2.4 - 26.4 \times 4.5 &= 0 \\
F_{CE} &= 56.1 kN \to \text{Tension}
\end{align*}
\section*{Question 4}
Support reactions
\begin{align*}
\sum M_I &= 0 \\
2\times 12 + 5\times 8 3\times 6 + 2\times 4 - A_y \times 16 &= 0 \\
A_y &= 5.625 kN
\end{align*}
\begin{align*}
\sum A_x &= 0 \\
A_x &= 0
\end{align*}
Method of joints: By inspection, members BN, NC, DO, OC, HJ, LE \& JG are zero force members \\
Method of sections:
\begin{align*}
\sum M_M &= 0 \\
4F_{CD} - 5.625 \times 4 &= 0 \\
F_{CD} &= 5.625 kN \to \text{Tension}
\end{align*}
\begin{align*}
\sum M_A &= 0 \\
4F_{CM} - 2\times 4 &= 0 \\
F_{CM} &= 2 kN \to \text{Tension}
\end{align*}
\end{document}

View File

@@ -0,0 +1,284 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{siunitx}
\begin{document}
\title{Engineering Mechanics}
\author{Ahmad Saalim Lone, 2019BCSE017}
\date{}
\maketitle
\section*{Question 1}
Applying the equations of the equilibrium to the FBD of the entire truss, we have
\begin{align*}
\sum M_A &= 0 \\
N_C (2 + 2) - 4(2) - 3(1.5) &= 0 \\
N_C &= 3.125 kN
\end{align*}
\begin{align*}
\sum F_x &= 0 \\
3 - A_x &= 0 \\
A_x &= 3 kN
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
A_y + 3.125 - 4 &= 0 \\
A_y &= 0.875 kN
\end{align*}
Method of joints \\
Joint C:\@ Just assume it to be in equilibrium
\begin{align*}
\sum F_y &= 0 \\
3.125 - F_{CD} \frac{3}{5} &= 0 \\
F_{CD} &= 5.21 kN \to \text{Compression}
\end{align*}
\begin{align*}
\sum F_x &= 0 \\
5.208 \times \frac{4}{5} - F_{CB} &= 0 \\
F_{CB} &= 4.17kN \to \text{Tension}
\end{align*}
Joint A:\@
\begin{align*}
\sum F_y &= 0 \\
0.875 - F_{AD} \times \frac{3}{5} &= 0 \\
F_{AD} &= 1.46 kN \to \text{Compression}
\end{align*}
\begin{align*}
\sum F_x &= 0 \\
F_{AB} - 3 - 1.458 \times \frac{4}{5} &= 0 \\
F_{AB} &= 4.167 kN \to \text{Tension}
\end{align*}
Joint B
\begin{align*}
\sum F_y &= 0 \\
F_{BD} &= 4 kN
\end{align*}
\begin{align*}
\sum F_x &= 0 \\
4.167 - 4.167 &= 0
\end{align*}
\section*{Question 2}
Analyze equilibrium of joint D, C \& E.
Joint D
\begin{align*}
\sum F_x &= 0 \\
F_{DE} \times \frac{3}{5} - 600 &= 0 \\
F_{DE} &= 1 kN \to \text{Compression}
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
1000 \times \frac{4}{5} - F_{DC} &= 0 \\
F_{DC} &= 800 N \to \text{Tension}
\end{align*}
Joint C
\begin{align*}
\sum F_x &= 0 \\
F_{CE} &= 900 N \to \text{Compression}
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{CB} &= 800 N \to \text{Tension}
\end{align*}
Joint E
\begin{align*}
\sum F_x &= 0 \\
F_{EB} &= 750 N \to \text{Tension}
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{BA} &= 1.75 kN \to \text{Compression}
\end{align*}
\section*{Question 3}
Joint A
\begin{align*}
\sum F_y &= 0 \\
F_{AL} &= 28.28 kN \to \text{Compression}
\end{align*}
\begin{align*}
\sum F_x &= 0 \\
F_{AB} &= 20 kN \to \text{Tension}
\end{align*}
Joint B
\begin{align*}
\sum F_x &= 0 \\
F_{BC} &= 20 kN \to \text{Tension}
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{BL} &= 0
\end{align*}
Joint L
\begin{align*}
\sum F_x &= 0 \\
F_{LC} &= 0
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{LK} &= 28.28 kN \to \text{Compression}
\end{align*}
Joint C
\begin{align*}
\sum F_x &= 0 \\
F_{CD} &= 20 kN \to \text{Tension}
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{CK} &= 10 kN \to \text{Tension}
\end{align*}
Joint K
\begin{align*}
\sum F_x &= 0 \\
F_{KD} &= 7.454 kN
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{KJ} &= 23.57 kN \to \text{Compression}
\end{align*}
Joint J
\begin{align*}
\sum F_x &= 0 \\
F_{IJ} &= 23.57 kN
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{JD} &= 33.3 kN \to \text{Tension}
\end{align*}
Now we know that there exists symmetry,
\begin{gather*}
F_{AL} = F_{GH} = F{LK} = F{HI} = 28.3 kN \\
F_{AB} = F_{GF} = F_{BC} = F_{FE} = F_{CD} = F_{ED} = 20 kN \\
F_{BL} = F_{FH} = F_{LC} = F_{HE} = 0 \\
F_{CK} = F_{EI} = 10 kN \\
F_{KJ} = F_{IJ} = 23.6 kN \\
F_{KD} = F_{ID} = 7.45 kN
\end{gather*}
\section*{Question 4}
To evaluate support reactions
\begin{align*}
\sum M_E &= 0 \\
A_y &= \frac{4}{3} P
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
E_y &= \frac{4}{3} P
\end{align*}
\begin{align*}
\sum F_x &= 0 \\
E_x &= P
\end{align*}
Methods of joints: By inspecting joint C, members CB \& CD are zero force members. Hence
\[
F_{CB} = F_{CD} = 0
\]
Joint A
\begin{align*}
\sum F_y &= 0 \\
F_{AB} &= 2.40 P \to \text{Compression}
\end{align*}
\begin{align*}
\sum F_x &= 0 \\
F_{AF} &= 2P \to \text{Tension}
\end{align*}
Joint B
\begin{align*}
\sum F_x &= 0 \\
2.404P \times \frac{1.5}{\sqrt{3.25}} - P - F_{BF} \times \frac{0.5}{\sqrt{1.25}} - F_{BD} \times \frac{0.5}{\sqrt{1.25}} &= 0 \\
P - 0.447 F_{BF} - 0.447 F_{BD} &= 0
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
2.404P \times \frac{1}{\sqrt{3.25}} - F_{BF} \times \frac{1}{\sqrt{1.25}} + F_{BD} \times \frac{1}{\sqrt{1.25}} &= 0 \\
1.33P - 0.8944 F_{BF} + 0.8944 F_{BD} &= 0
\end{align*}
Solving the above equations, we get
\begin{align*}
F_{BD} &= 0.3727 P \to \text{Compression}\\
F_{BF} &= 1.863 P \to \text{Tension}
\end{align*}
Joint D
\begin{align*}
\sum F_y &= 0 \\
F_{DE} &= 0.3727 P \to \text{Compression}
\end{align*}
\section*{Question 5}
FBD of Joint A
\begin{gather*}
\frac{F_{AB}}{2.29} = \frac{F_{AC}}{2.29} = \frac{1.2}{1.2} kN \\
F_{AB} = 2.29 kN \to \text{Tension} \\
F_{AC} = 2.29 kN \to \text{Compression}
\end{gather*}
FBD of Joint F
\begin{gather*}
\frac{F_{DF}}{2.29} = \frac{F_{EF}}{2.29} = \frac{1.2}{1.2} kN \\
F_{DF} = 2.29 kN \to \text{Tension} \\
F_{EF} = 2.29 kN \to \text{Compression}
\end{gather*}
FBD of Joint D
\begin{gather*}
\frac{F_{BD}}{2.21} = \frac{F_{DE}}{0.6} = \frac{2.29}{2.29} kN \\
F_{DE} = 0.6 kN \to \text{Compression}\\
F_{EF} = 2.21 kN \to \text{Tension}
\end{gather*}
FBD of Joint C
\begin{align*}
\sum F_x &= 0 \\
F_{CE} &= 2.21 kN \to \text{Compression}
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{CH} &= 1.2 kN \to \text{Compression}
\end{align*}
FBD of Joint E
\begin{align*}
\sum F_x &= 0 \\
F_{BH} &= 0
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{EJ} &= 1.2 kN \to \text{Compression}
\end{align*}
\section*{Question 6}
Zero Force Members
Analyzing joint F:\@ Note that $DF$ and $EF$ are zero force members.
\[
F_{DF} = F_{EF} = 0
\]
Analyzing joint D:\@ Note that $BD$ and $DE$ are zero force members.
\[
F_{BD} = F_{DE} = 0
\]
FBD of joint A
\begin{gather*}
\frac{F_{AB}}{2.29} = \frac{F_{AC}}{2.29} = \frac{1.2}{1.2} kN \\
F_{AB} = 2.29 kN \to \text{Tension}\\
F_{AC} = 2.29 kN \to \text{Compression}
\end{gather*}
FBD of joint B
\begin{align*}
\sum F_x &= 0 \\
F_{BE} &= 2.7625 kN \to \text{Tension}
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{BC} &= 2.25 kN \to \text{Compression}
\end{align*}
FBD of joint C
\begin{align*}
\sum F_x &= 0 \\
F_{CE} &= 2.21 kN \to \text{Compression}
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
F_{CH} &= 2.86 kN \to \text{Compression}
\end{align*}
FBD of joint E
\begin{align*}
\sum F_x &= 0 \\
F_{EH} &= 0
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
f_{EJ} &= 1.657 kN \to \text{Tension}
\end{align*}
\end{document}

View File

@@ -0,0 +1,135 @@
\documentclass{article}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{siunitx}
\usepackage{graphicx}
\usepackage{wrapfig}
\graphicspath{{./images/}}
\begin{document}
\title{Engineering Mechanics}
\author{Ahmad Saalim Lone, 2019BCSE017}
\date{17 May, 2020}
\maketitle
\section*{Question 1}
\subsection*{Question 1.a}
We shall balance the torque about $C$. $\angle ABC = \theta$, Tension in cable $=T$.
\begin{align*}
240 (0.4) + 240 (0.8) &= T\sin{\theta} \times 0.18 \\
T\sin{\theta} &= 1600 \\
T \frac{0.24}{0.3} &= 1600 \\
T &= 2000
\end{align*}
\subsection*{Question 1.b}
On making FBD of bracket BCD.\@
\begin{align*}
x-component &= N_x = T\sin{\theta} = 1600 \\
y-component &= N_y = T\cos{\theta} + 240 +240 = 1680
\end{align*}
\section*{Question 2}
\subsection*{Question 2.a}
We shall balance the torque about C
\begin{align*}
P \times 7.5 &= T \times 5 \\
T &= 150 lb
\end{align*}
\subsection*{Question 2.b}
\begin{align*}
N_x \text{(reaction at C along x-axis)} &= - (P + T\sin{\ang{37}}) = -190 lb \\
N_y \text{(reaction at C along y-axis)} &= - T \cos{\ang{37}} = -120 lb
\end{align*}
\section*{Question 3}
\subsection*{Question 3.a}
\[
\alpha = 0
\]
Balance torque about B
\begin{align*}
N_a \times 20 &= 75 \times 10 \\
N_a &= 37.5 lb
\end{align*}
Balance torque about A
\begin{align*}
N_b \times 20 &= 75 \times 10 \\
N_b &= 37.5 lb
\end{align*}
\subsection*{Question 3.b}
\[
\alpha = \ang{90}
\]
Balance torque about A
\begin{align*}
N_b \times 20 &= 75 \times 10 \\
N_b &= 37.5 lb
\end{align*}
Balance torque about B
\begin{align*}
N_a \times 12 &= 75 \times 10 \\
N_a &= 62.5 lb
\end{align*}
\subsection*{Question 3.c}
\[
\alpha = \ang{30}
\]
Balance torque about the mid point of horizontal rod
\begin{align*}
N_a \times 10 &= {(N_b)}_y \times 10 \\
N_a &= {(N_b)}_y
\end{align*}
Balance torque about B
\begin{align*}
N_a \times 20 &= 75 \times 10 \\
N_a &= 37.5 lb \\\\
N_a &= N_b \cos{\ang{30}} \\
N_b &= 43.30
\end{align*}
\section*{Question 4}
\subsection*{Question 4.a}
Balance torque about C
\begin{align*}
120 \times 0.28 &= T \times \frac{150}{250} \times 0.2 + T \times \frac{150}{390} \times 0.36 \\
33.6 &= T \times 0.26 \\
T &= 129.2 N \approx 130 N
\end{align*}
\subsection*{Question 4.b}
\begin{align*}
{(N_c)}_x &= T \times \frac{200}{250} + T \times \frac{360}{390} \\
{(N_c)}_x &= 223 N \\
{(N_c)}_y &= 120 - \left(T \times \frac{150}{250} + T \times \frac{150}{390}\right) \\
{(N_c)}_y &= -7.21 N \\
N_c &= \sqrt{223^2 + 7.21^2} N \\
N_c &= 224 N
\end{align*}
\section*{Question 5}
Balance torque about B
\begin{align*}
{(N_a)}_y \times 8 &= 4000 \times 2 \\
{(N_a)}_y &= 1000 N
\end{align*}
FBD of Rod
\begin{align*}
4000 &= {(N_A)}_y + {(N_B)}_y \\
4000 &= 1000 + {(N_B)}_y \\
{(N_B)}_y &= 3000 \\\\
{(N_B)}_y &= N_b \sin{\ang{60}} \\
N_B &= 3465 \\
{(N_A)}_x &= {(N_B)}_x \\
{(N_A)}_x &= N_B \sin{\ang{30}} \\
{(N_A)}_x &= 1732
\end{align*}
\section*{Question 6}
First we have to calculate reaction at A
\begin{align*}
\sum F_x &= 0 \\
4000 \cos{\ang{30}} &= A_x \\
A_x &= 3464 N
\end{align*}
\begin{align*}
\sum F_y &= 0 \\
6000 + 4000 \cos{\ang{30}} &= A_y \\
A_y &= 8000 N
\end{align*}
\end{document}

View File

@@ -595,7 +595,7 @@ Doing transformations to form row echelon form, we get
\section*{Question 15} \section*{Question 15}
\subsection*{Part i} \subsection*{Part i}
Since $A + A^{-1} = 0$, $A$ must either be skew symmetric. If A is skew symmetric, we know that the rank of an odd order skew symmetric matrix must be even. $\therefore Rank \leq 2020$ Since $A + A^T = 0$, $A$ must either be skew symmetric. If A is skew symmetric, we know that the rank of an odd order skew symmetric matrix must be even. $\therefore Rank \leq 2020$
\subsection*{Part ii} \subsection*{Part ii}
Inverse does not exist as $A$ is singular matrix. Inverse does not exist as $A$ is singular matrix.
\end{document} \end{document}