second-sem/maths/assignment-matrices/assign.tex

386 lines
5.5 KiB
TeX
Raw Normal View History

2020-05-05 01:04:37 +02:00
\documentclass{article}
2020-05-05 00:47:29 +02:00
% Import for matrices
\usepackage{amsmath}
2020-05-05 01:43:31 +02:00
% Import for therefore symbol
\usepackage{amssymb}
2020-05-05 00:47:29 +02:00
\begin{document}
\title{Mathematics Assignment --- Matrices}
\author{Ahmad Saalim Lone, 2019BCSE017}
\date{05 May, 2020}
\maketitle
\section{Question 1}
2020-05-05 02:47:37 +02:00
If
\(
A =
\begin{bmatrix}
2 & -5 & -1 \\
-2 & -1 & 4
\end{bmatrix}
B =
\begin{bmatrix}
3 & 4 & 0 \\
5 & -2 & 3
\end{bmatrix}
\) find:
2020-05-05 00:47:29 +02:00
2020-05-05 02:47:37 +02:00
\begin{enumerate}
\item $A + B$
\item $2A + B$
\end{enumerate}
\subsection{Part 1}
2020-05-05 02:02:14 +02:00
\[
2020-05-05 00:47:29 +02:00
A + B =
\begin{bmatrix}
2 + 1 & -5 + 4 & -1 + 0 \\
-2 + 5 & -1 -2 & 4 + 3
\end{bmatrix}
2020-05-05 02:02:14 +02:00
\]
\[
2020-05-05 00:47:29 +02:00
A + B =
\begin{bmatrix}
3 & -1 & -1 \\
3 & -3 & 7
\end{bmatrix}
2020-05-05 02:02:14 +02:00
\]
2020-05-05 02:47:37 +02:00
\subsection{Part 2}
2020-05-05 02:02:14 +02:00
\[
2020-05-05 00:47:29 +02:00
2A + B =
\begin{bmatrix}
4 + 1 & -10 + 4 & -2 + 0 \\
-4 + 5 & -2 -2 & 8 + 3
\end{bmatrix}
2020-05-05 02:02:14 +02:00
\]
\[
2020-05-05 00:47:29 +02:00
2A + B =
\begin{bmatrix}
5 & -6 & -2 \\
1 & -4 & 11
\end{bmatrix}
2020-05-05 02:02:14 +02:00
\]
2020-05-05 01:43:31 +02:00
2020-05-05 01:04:37 +02:00
\section{Question 2}
2020-05-05 02:47:37 +02:00
If \(
A =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
B =
\begin{bmatrix}
1 & 0 & 2 \\
2 & 1 & 2 \\
5 & 2 & 3
\end{bmatrix}
\), find $AB$.
2020-05-05 02:02:14 +02:00
\[
2020-05-05 01:04:37 +02:00
AB =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 2 \\
2 & 1 & 2 \\
5 & 2 & 3
\end{bmatrix}
2020-05-05 02:02:14 +02:00
\]
\[
2020-05-05 01:04:37 +02:00
AB =
\begin{bmatrix}
2020-05-05 01:43:31 +02:00
1 \times 1 + 2 \times 2 + 3 \times 5 & 1 \times 0 + 2 \times 1 + 3 \times 2 & 1 \times 2 + 2 \times 2 + 3 \times 3 \\
4 \times 1 + 5 \times 2 + 6 \times 5 & 4 \times 0 + 5 \times 1 + 6 \times 2 & 4 \times 2 + 5 \times 2 + 6 \times 3 \\
7 \times 1 + 8 \times 2 + 9 \times 5 & 7 \times 0 + 8 \times 1 + 9 \times 2 & 7 \times 2 + 8 \times 2 + 9 \times 3
2020-05-05 01:04:37 +02:00
\end{bmatrix}
2020-05-05 02:02:14 +02:00
\]
\[
2020-05-05 01:04:37 +02:00
AB =
\begin{bmatrix}
20 & 8 & 16 \\
44 & 17 & 36 \\
68 & 26 & 57
\end{bmatrix}
2020-05-05 02:02:14 +02:00
\]
2020-05-05 01:43:31 +02:00
\section{Question 3}
If \(
A =
\begin{bmatrix}
1 & -2 & -3 \\
-4 & 2 & 5
\end{bmatrix}
B =
\begin{bmatrix}
2 & 3 \\
4 & 5 \\
2 & 1
\end{bmatrix}
\), show that \(AB \ne BA\).
Order of $A$ = $2\times3$
Order of $B$ = $3\times2$
Order of $AB$ = $rows \; of \; A \times columns \; of \; B$ = $2\times2$
Order of $BA$ = $rows \; of \; B \times columns \; of \; A$ = $3\times3$
Matrices of different order can't be equal.
$\therefore AB \ne BA$
\section{Question 4}
Show that \(
A =
\begin{bmatrix}
3 & 1 + 2i \\
1-2i & 2
\end{bmatrix}
\) is a hermitian.
For a matrix to be hermitian, each element $a_{i,j}$ needs to be the complex
conjugate of the element at $a_{j,i}$. In given matrix, we have
\begin{itemize}
\item \(a_{11} = 3\)
\item \(a_{12} = 1 + 2i\)
\item \(a_{21} = 1 - 2i\)
\item \(a_{22} = 2\)
\end{itemize}
The conjugates are as follows
\begin{itemize}
\item \(\overline{a_{11}} = 3\)
\item \(\overline{a_{12}} = 1 - 2i\)
\item \(\overline{a_{21}} = 1 + 2i\)
\item \(\overline{a_{22}} = 2\)
\end{itemize}
As we can see, \(\overline{a_{11}} = a_{11}\), \(\overline{a_{12}} = a_{21}\), \(\overline{a_{21}} = a_{12}\) and \(\overline{a_{22}} = a_{22}\).
$\therefore A$ is hermitian.
\section{Question 5}
If \(
A =
\begin{bmatrix}
5 & 1 + i \\
-1 + i & 4
\end{bmatrix}
\), show that ${(A^{\theta})}^{\theta}$
\[
A =
\begin{bmatrix}
5 & 1 + i \\
-1 + i & 4
\end{bmatrix}
\]
\[
\overline{A^{\theta}} =
\begin{bmatrix}
5 & - 1 - i \\
1 + i & 4
\end{bmatrix}
\]
\[
{(A^{\theta})}^{\theta} =
\begin{bmatrix}
5 & 1 + i \\
-1 + i & 4
\end{bmatrix}
\]
\[
\therefore {(A^{\theta})}^{\theta} = A
\]
2020-05-05 02:02:14 +02:00
\section{Question 6}
$ A =
\begin{bmatrix}
1 & 0 & -1 \\
3 & 4 & 5 \\
0 & -6 & -7
\end{bmatrix}
$, find $ adj. A$
Adjoint of a matrix is the transpose of the cofactor matrix of the original matrix
\[
2020-05-05 02:19:09 +02:00
Cofactor\;of\;A_{11} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
4 & 5 \\
-6 & -7
\end{vmatrix}
= 2
2020-05-05 02:19:09 +02:00
\]
\[
Cofactor\;of\;A_{12} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
3 & 5 \\
0 & -7
\end{vmatrix}
= -21
2020-05-05 02:19:09 +02:00
\]
\[
Cofactor\;of\;A_{13} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
3 & 4 \\
0 & -6
\end{vmatrix}
= -18
\]
\[
2020-05-05 02:19:09 +02:00
Cofactor\;of\;A_{21} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
0 & -1 \\
-6 & -7
\end{vmatrix}
= -6
2020-05-05 02:19:09 +02:00
\]
\[
Cofactor\;of\;A_{22} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
1 & -1 \\
0 & -7
\end{vmatrix}
= -7
2020-05-05 02:19:09 +02:00
\]
\[
Cofactor\;of\;A_{23} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
1 & -1 \\
0 & -6
\end{vmatrix}
= -6
\]
\[
2020-05-05 02:19:09 +02:00
Cofactor\;of\;A_{31} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
0 & -1 \\
4 & 5
\end{vmatrix}
= 4
2020-05-05 02:19:09 +02:00
\]
\[
Cofactor\;of\;A_{32} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
1 & -1 \\
3 & 5
\end{vmatrix}
= 8
2020-05-05 02:19:09 +02:00
\]
\[
Cofactor\;of\;A_{33} =
2020-05-05 02:02:14 +02:00
\begin{vmatrix}
1 & 0 \\
3 & 4
\end{vmatrix}
= 4
\]
\[
Cofactor\;Matrix =
\begin{bmatrix}
2 & -21 & -18 \\
-6 & -7 & -6 \\
4 & 8 & 4
\end{bmatrix}
\]
Adjoint matrix is the transpose of Cofactor Matrix.
\[
\therefore adj.A =
\begin{bmatrix}
2 & -6 & 4 \\
-21 & -7 & 8 \\
-18 & -6 & 4
\end{bmatrix}
\]
2020-05-05 02:19:09 +02:00
\section{Question 7}
\( A =
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\), show that $A^{-1} = A$.
We know that
\[
A^{-1} = \frac{adj.(A)}{|A|}
\]
\begin{align*}
Cofactor\;of\;A_{11} &= 0 \\
Cofactor\;of\;A_{12} &= 0 \\
Cofactor\;of\;A_{13} &= -1 \\
Cofactor\;of\;A_{21} &= 0 \\
Cofactor\;of\;A_{22} &= -1 \\
Cofactor\;of\;A_{23} &= 0 \\
Cofactor\;of\;A_{31} &= -1 \\
Cofactor\;of\;A_{32} &= 0 \\
Cofactor\;of\;A_{33} &= 0
\end{align*}
\[
Cofactor\;Matrix =
\begin{bmatrix}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{bmatrix}
\]
\[
adj.A =
\begin{bmatrix}
0 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{bmatrix}
\]
\[
|A| =
\begin{vmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{vmatrix}
2020-05-05 02:47:37 +02:00
= 1 \times
\begin{vmatrix}
0 & 1 \\
1 & 0
\end{vmatrix}
= 1 \times -1 = -1
\]
2020-05-05 02:19:09 +02:00
\[
A^{-1} = \frac{adj.A}{|A|}
\]
\[
A^{-1} =
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{bmatrix}
\]
\[
\therefore A^{-1} = A
\]
2020-05-05 00:47:29 +02:00
\end{document}