Compare commits
8 Commits
b4987269ea
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| c22f140ad5 | |||
| 7f7a385591 | |||
| 9ff4a1562a | |||
| d2452e9f5c | |||
| 030b6519ed | |||
| f2741293b7 | |||
| 9be81a4859 | |||
| 63b74bfc44 |
83
elements_of_mech/assignment-work-and-heat/assign2.tex
Normal file
83
elements_of_mech/assignment-work-and-heat/assign2.tex
Normal file
@@ -0,0 +1,83 @@
|
||||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\title{Assignment --- First Law of Thermodynamics}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{}
|
||||
\maketitle
|
||||
\section*{Question 1}
|
||||
First law of thermodynamics suggests that $\sum Q = \sum W$.
|
||||
\begin{align*}
|
||||
Q_1 + Q_2 + Q_3 &= W_1 + W_2 \\
|
||||
75 - 40 + Q_3 &= -15 + 44 \\
|
||||
Q_3 &= -6 kJ
|
||||
\end{align*}
|
||||
i.e.\ from the system to the surroundings.
|
||||
\section*{Question 2}
|
||||
We know that,
|
||||
\begin{align*}
|
||||
Q &= \Delta E + W \\
|
||||
Q &= -50000 + \frac{-1000 \times 3600}{1000} kJ \\
|
||||
Q &= -8600 kJ \\
|
||||
Q &= -8.6 MJ
|
||||
\end{align*}
|
||||
\section*{Question 3}
|
||||
There is no heat transfer, therefore
|
||||
\begin{align*}
|
||||
Q &= \Delta E + W \\
|
||||
W &= - \Delta E - \Delta V \\
|
||||
W &= \int_{1}^{0} C_v \cdot dT \\
|
||||
W &= -0.718 (T_2 - T_1) \\
|
||||
W &= -50.26 \frac{kJ}{kg} \\
|
||||
\text{Total Work} &= 2 \times (-50.26) = -100 kJ
|
||||
\end{align*}
|
||||
\section*{Question 4}
|
||||
\begin{align*}
|
||||
1000 &= a + b \times 0.2 \\
|
||||
200 &= a + b \times 1.2 \\
|
||||
b &= -800 \\
|
||||
a &= 1000 + 2 \times 800 = 1160 \\
|
||||
\therefore P &= 1160 - 800 V \\
|
||||
W &= \int_{V_1}^{V_2} P \cdot dV \\
|
||||
&= \int_{0.2}^{1.2} (1160 - 800V)dV \\
|
||||
&= 6000 kJ \\
|
||||
V_1 &= 1.5 \times 1000 \times \frac{0.2}{1.5} - 85 \\
|
||||
&= 215 \frac{kJ}{kg} \\
|
||||
V_2 &= 1.5 \times 200 \times \frac{1.2}{1.5} - 85 \\
|
||||
&= 155 \frac{kJ}{kg} \\
|
||||
\Delta V &= V_2 - V_1 \\
|
||||
&= 40 \frac{kJ}{kg} \\
|
||||
\Delta U &= m \Delta V = 60 kJ \\
|
||||
Q &= \Delta U + W \\
|
||||
&= 60 + 600 \\
|
||||
&= 660 kJ \\
|
||||
U &= 1.5 PV - 85 \frac{kJ}{kg} \\
|
||||
U &= 1.5 \left(\frac{1160 - 800 V}{1.5}\right)V - 85 \frac{kJ}{kg} \\
|
||||
&= 800 V^2 - 85 \frac{kJ}{kg} \\
|
||||
\frac{\delta U}{\delta V} &= 1160 - 1600 V \\
|
||||
\text{For maximum V,} \\
|
||||
V_1 \rightarrow \frac{\delta U}{\delta V} &= 0 \\
|
||||
V &= 0.725 \\
|
||||
u_{\max} = 335.5 \frac{kJ}{kg} \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
U_{\max} &= 1.5 \times u_{\max} = 503.25 kJ \\
|
||||
\end{align*}
|
||||
\section*{Question 5}
|
||||
\subsection*{Part a}
|
||||
\begin{align*}
|
||||
Q &= \int_{273}^{373} C_p \cdot dT \\
|
||||
t &= T - 273 K \\
|
||||
\therefore t + 100 &= T - 173 \\
|
||||
Q &= \int_{273}^{373} \left(2.093 + \frac{41.87}{T - 173}\right) \cdot dT \\
|
||||
Q &= 238.32 J
|
||||
\end{align*}
|
||||
\subsection*{Part b}
|
||||
\begin{align*}
|
||||
Q &= \Delta E + \int p\cdot dV \\
|
||||
\Delta E &= Q - p(V_2 - V_1) \\
|
||||
\Delta E &= 238.32 - 101.325 (0.0024 - 0.002) \times 1000 J \\
|
||||
\Delta E &= 197.79J
|
||||
\end{align*}
|
||||
\end{document}
|
||||
117
elements_of_mech/assignment-work-and-heat/assign3.tex
Normal file
117
elements_of_mech/assignment-work-and-heat/assign3.tex
Normal file
@@ -0,0 +1,117 @@
|
||||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\title{Assignment --- Second Law of Thermodynamics}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{}
|
||||
\maketitle
|
||||
\section*{Question 1}
|
||||
We know that the net power output is the difference between the heat input and the heat rejected (cyclic device).
|
||||
\begin{align*}
|
||||
W_{net,out} &= Q_H + Q_L \\
|
||||
W_{out} &= 90 - 55 = 35 MW
|
||||
\end{align*}
|
||||
The thermal efficiency is the ratio of net work output and the heat output.
|
||||
\[
|
||||
\eta_{thermal} = W_{out}\frac{W_{out}}{Q_H} = \frac{35}{90} = 0.3889
|
||||
\]
|
||||
\section*{Question 2}
|
||||
\begin{align*}
|
||||
\text{efficiency} = 1 - \frac{T_1}{T_2} &= \frac{\text{work input}}{\text{work output}} \;\;\text{(must)}\\
|
||||
1 - \frac{300}{1000} &\implies \frac{6}{1} \;\;\text{(claimed)} \\
|
||||
0.7 &> 0.6 \\
|
||||
\text{output} &> \text{claimed $\implies$ good}
|
||||
\end{align*}
|
||||
$\therefore$ we can agree to this claim.
|
||||
\section*{Question 3}
|
||||
\[
|
||||
\eta = \frac{\text{output}}{\text{input}} = \frac{0.65}{0.65 + 0.4} = 0.619 = 61.9%
|
||||
\]
|
||||
now,
|
||||
\begin{align*}
|
||||
\eta &= 1 - \frac{T_2}{T_1} \\
|
||||
T_1 &= \frac{T_2}{1 - \eta} \\
|
||||
T_1 &= 787.5 K
|
||||
\end{align*}
|
||||
$\therefore$, the temperature at which energy is absorbed is 787.5 K
|
||||
\section*{Question 4}
|
||||
\begin{align*}
|
||||
\eta &= 1 - \frac{T_1}{T_2} \\
|
||||
\end{align*}
|
||||
where,
|
||||
\begin{align*}
|
||||
\eta &= 0.6 \\
|
||||
T_2 &= 800 K \\
|
||||
T_1 &= T_{sink} \\
|
||||
T_{sink} &= (1 - \eta)T_2 \\
|
||||
&= 324K
|
||||
\end{align*}
|
||||
Also,
|
||||
\begin{align*}
|
||||
\eta &= \frac{Q_1 - Q_{\text{rejected}}}{Q_1} \\
|
||||
Q_{\text{rejected}} &= Q_1 (1 - \eta) \\
|
||||
&= 400(1 - 0.6) \\
|
||||
&= 160 kJ
|
||||
\end{align*}
|
||||
\section*{Question 5}
|
||||
Max COP will be achieved only in a Carnot refrigerator.
|
||||
\[
|
||||
{(COP_{\max})}_{R} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2} = \frac{-20 + 273}{57} = 4.438
|
||||
\]
|
||||
Minimum Power $\to$ Max COP\@. We know that $P = \frac{Q}{\eta}$.
|
||||
\[
|
||||
P = \frac{3 \times 57}{253} = 0.657 W
|
||||
\]
|
||||
\section*{Question 6}
|
||||
Max COP will be achieved only in a Carnot refrigerator.
|
||||
\begin{align*}
|
||||
{(COP)}_{\text{Carnot refrigerator}} &= \frac{T_{low}}{T_{high} - T_{low}} = 1.37 \times 10^{-2} \\
|
||||
{(COP)}_{\text{refrigerator}} &= \frac{Q_L}{W} = 1.37 \times 10^{-2} \\
|
||||
Q_L &= 83.3 \\
|
||||
\end{align*}
|
||||
\section*{Question 7}
|
||||
For process $1-2$
|
||||
\begin{align*}
|
||||
Q_{1-2} &= U_2 - U_1 + W_{1-2} \\
|
||||
-732 &= U_2 - U_1 - 2.8 \times 3600 \\
|
||||
U_2 - U_1 &= 9348kJ
|
||||
\end{align*}
|
||||
For process $2-1$
|
||||
\begin{align*}
|
||||
Q_{2-1} &= U_1 - U_2 + W_{2-1} \\
|
||||
-732 &= -9348 - 2.8 \times 3600 \\
|
||||
Q_{2-1} &= -708 kJ
|
||||
\end{align*}
|
||||
Now,
|
||||
\[
|
||||
Q_{2-1} = U_1 - U_2 + W_{2-1}
|
||||
\]
|
||||
For maximum work, $Q_{2-1} = 0$.
|
||||
\[
|
||||
\therefore {(W_{2-1})}_{\max} = U_2 - U_1 = 9348kJ
|
||||
\]
|
||||
\section*{Question 8}
|
||||
\begin{align*}
|
||||
{(COP)}_R &= \frac{268}{298 - 268} = 8.933 \\
|
||||
{(COP)}_R &= \frac{5}{W} \\
|
||||
W &= 0.56KW
|
||||
\end{align*}
|
||||
\section*{Question 9}
|
||||
\begin{align*}
|
||||
\eta &= 1 - \frac{273+60}{273+671} = 0.64725 \\
|
||||
\eta &= 0.3236 \\
|
||||
\implies 1 - 0.3236 &= 0.6764 \\
|
||||
\text{Ideal COP} &= \frac{305.2}{305.2 - 266.4} = 7.866 \\
|
||||
\text{Actual COP} &= 3.923 = \frac{Q_3}{W} \\
|
||||
if \;Q_3 &= 1kJ \\
|
||||
\therefore W &= \frac{Q_3}{3.923} = 0.2549kJ \\
|
||||
W &= Q_{\text{output}} - Q_{\text{input}} = \frac{1}{3.923} Q_1 - 0.6764Q_1 = 0.2549 \\
|
||||
Q_{\text{out}} &= \frac{0.2549}{1 - 0.6764} = 0.7877 kJ \\
|
||||
\end{align*}
|
||||
\section*{Question 10}
|
||||
\begin{align*}
|
||||
\frac{10}{W} &= \frac{293}{293-273} \\
|
||||
or\;W &= 683 W
|
||||
\end{align*}
|
||||
\end{document}
|
||||
115
engg_mech/assignment/t_four.tex
Normal file
115
engg_mech/assignment/t_four.tex
Normal file
@@ -0,0 +1,115 @@
|
||||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{siunitx}
|
||||
\begin{document}
|
||||
\title{Engineering Mechanics}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{}
|
||||
\maketitle
|
||||
\section*{Question 1}
|
||||
Calculate Reactions:
|
||||
\begin{align*}
|
||||
\sum M_J &= 0 \\
|
||||
(12 kN)(4.8) + (12 kN)(2.4) - B(9.6) &= 0 \\
|
||||
B &= 9 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
9 kN - 12 kN - 12 kN + J &= 0 \\
|
||||
J &= 15kN
|
||||
\end{align*}
|
||||
Member CD:\@
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
9 kN + F_{CD} &= 0 \\
|
||||
F_{CD} &= 9 kN \to \text{compression}
|
||||
\end{align*}
|
||||
Member DF:\@
|
||||
\begin{align*}
|
||||
\sum M_c &= 0 \\
|
||||
F_{DF}1.8 m - 9kN \times 2.4m &= 0 \\
|
||||
F_{DF} &= 12kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\section*{Question 2}
|
||||
Reactions:\@
|
||||
\[
|
||||
A = N = 0
|
||||
\]
|
||||
DF member:\@
|
||||
\begin{align*}
|
||||
\sum M_E &= 0 \\
|
||||
(16 kN)(6m) - \frac{3}{5} F_{DF} (4m) &= 0 \\
|
||||
F_{DF} &= 40 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
|
||||
EF member:\@
|
||||
\begin{align*}
|
||||
\sum F&= 0 \\
|
||||
16 kN \sin{\beta} - F_{EF} \cos{\beta} &= 0 \\
|
||||
F_{EF} &= 16 \tan{\beta} \\
|
||||
&= 12 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
|
||||
EG member:\@
|
||||
\begin{align*}
|
||||
\sum M_F &= 0 \\
|
||||
16kN \times 9m + \frac{4}{5}F_{EG} \times 3m &= 0 \\
|
||||
F_{EG} &= -60 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\section*{Question 3}
|
||||
Reactions
|
||||
\begin{align*}
|
||||
\sum M_k &= 0 \\
|
||||
36\times 2.4 - B \times 13.5 + 20 \times 9 + 20 \times 4.5 &= 0 \\
|
||||
B &= 26.4kN \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
K_x &= 36 \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
26.4 - 20 -20 + K_y &= 0 \\
|
||||
K_y &= 13.6 kN \uparrow \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum M_C &= 0 \\
|
||||
36 \times 1.2 - 26.4 \times 2.25 - F_{AD} \times 1.2 &= 0 \\
|
||||
F_{AD} &= 13.5 kN \to \text{compression} \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum M_A &= 0 \\
|
||||
\left( \frac{8}{17}F_{CD}\right)(4.5) &= 0 \\
|
||||
F_{CD} &= 0 \\
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum M_D &= 9 \\
|
||||
\frac{15}{17} \times F_{CE} \times 2.4 - 26.4 \times 4.5 &= 0 \\
|
||||
F_{CE} &= 56.1 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\section*{Question 4}
|
||||
|
||||
Support reactions
|
||||
\begin{align*}
|
||||
\sum M_I &= 0 \\
|
||||
2\times 12 + 5\times 8 3\times 6 + 2\times 4 - A_y \times 16 &= 0 \\
|
||||
A_y &= 5.625 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum A_x &= 0 \\
|
||||
A_x &= 0
|
||||
\end{align*}
|
||||
Method of joints: By inspection, members BN, NC, DO, OC, HJ, LE \& JG are zero force members \\
|
||||
Method of sections:
|
||||
\begin{align*}
|
||||
\sum M_M &= 0 \\
|
||||
4F_{CD} - 5.625 \times 4 &= 0 \\
|
||||
F_{CD} &= 5.625 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum M_A &= 0 \\
|
||||
4F_{CM} - 2\times 4 &= 0 \\
|
||||
F_{CM} &= 2 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\end{document}
|
||||
284
engg_mech/assignment/t_three.tex
Normal file
284
engg_mech/assignment/t_three.tex
Normal file
@@ -0,0 +1,284 @@
|
||||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{siunitx}
|
||||
\begin{document}
|
||||
\title{Engineering Mechanics}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{}
|
||||
\maketitle
|
||||
\section*{Question 1}
|
||||
Applying the equations of the equilibrium to the FBD of the entire truss, we have
|
||||
\begin{align*}
|
||||
\sum M_A &= 0 \\
|
||||
N_C (2 + 2) - 4(2) - 3(1.5) &= 0 \\
|
||||
N_C &= 3.125 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
3 - A_x &= 0 \\
|
||||
A_x &= 3 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
A_y + 3.125 - 4 &= 0 \\
|
||||
A_y &= 0.875 kN
|
||||
\end{align*}
|
||||
Method of joints \\
|
||||
Joint C:\@ Just assume it to be in equilibrium
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
3.125 - F_{CD} \frac{3}{5} &= 0 \\
|
||||
F_{CD} &= 5.21 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
5.208 \times \frac{4}{5} - F_{CB} &= 0 \\
|
||||
F_{CB} &= 4.17kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint A:\@
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
0.875 - F_{AD} \times \frac{3}{5} &= 0 \\
|
||||
F_{AD} &= 1.46 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{AB} - 3 - 1.458 \times \frac{4}{5} &= 0 \\
|
||||
F_{AB} &= 4.167 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint B
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{BD} &= 4 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
4.167 - 4.167 &= 0
|
||||
\end{align*}
|
||||
\section*{Question 2}
|
||||
Analyze equilibrium of joint D, C \& E.
|
||||
Joint D
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{DE} \times \frac{3}{5} - 600 &= 0 \\
|
||||
F_{DE} &= 1 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
1000 \times \frac{4}{5} - F_{DC} &= 0 \\
|
||||
F_{DC} &= 800 N \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint C
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{CE} &= 900 N \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{CB} &= 800 N \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint E
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{EB} &= 750 N \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{BA} &= 1.75 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\section*{Question 3}
|
||||
Joint A
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{AL} &= 28.28 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{AB} &= 20 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint B
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{BC} &= 20 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{BL} &= 0
|
||||
\end{align*}
|
||||
Joint L
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{LC} &= 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{LK} &= 28.28 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
Joint C
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{CD} &= 20 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{CK} &= 10 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint K
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{KD} &= 7.454 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{KJ} &= 23.57 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
Joint J
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{IJ} &= 23.57 kN
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{JD} &= 33.3 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
Now we know that there exists symmetry,
|
||||
\begin{gather*}
|
||||
F_{AL} = F_{GH} = F{LK} = F{HI} = 28.3 kN \\
|
||||
F_{AB} = F_{GF} = F_{BC} = F_{FE} = F_{CD} = F_{ED} = 20 kN \\
|
||||
F_{BL} = F_{FH} = F_{LC} = F_{HE} = 0 \\
|
||||
F_{CK} = F_{EI} = 10 kN \\
|
||||
F_{KJ} = F_{IJ} = 23.6 kN \\
|
||||
F_{KD} = F_{ID} = 7.45 kN
|
||||
\end{gather*}
|
||||
\section*{Question 4}
|
||||
To evaluate support reactions
|
||||
\begin{align*}
|
||||
\sum M_E &= 0 \\
|
||||
A_y &= \frac{4}{3} P
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
E_y &= \frac{4}{3} P
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
E_x &= P
|
||||
\end{align*}
|
||||
Methods of joints: By inspecting joint C, members CB \& CD are zero force members. Hence
|
||||
\[
|
||||
F_{CB} = F_{CD} = 0
|
||||
\]
|
||||
Joint A
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{AB} &= 2.40 P \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{AF} &= 2P \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint B
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
2.404P \times \frac{1.5}{\sqrt{3.25}} - P - F_{BF} \times \frac{0.5}{\sqrt{1.25}} - F_{BD} \times \frac{0.5}{\sqrt{1.25}} &= 0 \\
|
||||
P - 0.447 F_{BF} - 0.447 F_{BD} &= 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
2.404P \times \frac{1}{\sqrt{3.25}} - F_{BF} \times \frac{1}{\sqrt{1.25}} + F_{BD} \times \frac{1}{\sqrt{1.25}} &= 0 \\
|
||||
1.33P - 0.8944 F_{BF} + 0.8944 F_{BD} &= 0
|
||||
\end{align*}
|
||||
Solving the above equations, we get
|
||||
\begin{align*}
|
||||
F_{BD} &= 0.3727 P \to \text{Compression}\\
|
||||
F_{BF} &= 1.863 P \to \text{Tension}
|
||||
\end{align*}
|
||||
Joint D
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{DE} &= 0.3727 P \to \text{Compression}
|
||||
\end{align*}
|
||||
\section*{Question 5}
|
||||
FBD of Joint A
|
||||
\begin{gather*}
|
||||
\frac{F_{AB}}{2.29} = \frac{F_{AC}}{2.29} = \frac{1.2}{1.2} kN \\
|
||||
F_{AB} = 2.29 kN \to \text{Tension} \\
|
||||
F_{AC} = 2.29 kN \to \text{Compression}
|
||||
\end{gather*}
|
||||
FBD of Joint F
|
||||
\begin{gather*}
|
||||
\frac{F_{DF}}{2.29} = \frac{F_{EF}}{2.29} = \frac{1.2}{1.2} kN \\
|
||||
F_{DF} = 2.29 kN \to \text{Tension} \\
|
||||
F_{EF} = 2.29 kN \to \text{Compression}
|
||||
\end{gather*}
|
||||
FBD of Joint D
|
||||
\begin{gather*}
|
||||
\frac{F_{BD}}{2.21} = \frac{F_{DE}}{0.6} = \frac{2.29}{2.29} kN \\
|
||||
F_{DE} = 0.6 kN \to \text{Compression}\\
|
||||
F_{EF} = 2.21 kN \to \text{Tension}
|
||||
\end{gather*}
|
||||
FBD of Joint C
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{CE} &= 2.21 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{CH} &= 1.2 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
FBD of Joint E
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{BH} &= 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{EJ} &= 1.2 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\section*{Question 6}
|
||||
Zero Force Members
|
||||
Analyzing joint F:\@ Note that $DF$ and $EF$ are zero force members.
|
||||
\[
|
||||
F_{DF} = F_{EF} = 0
|
||||
\]
|
||||
Analyzing joint D:\@ Note that $BD$ and $DE$ are zero force members.
|
||||
\[
|
||||
F_{BD} = F_{DE} = 0
|
||||
\]
|
||||
FBD of joint A
|
||||
\begin{gather*}
|
||||
\frac{F_{AB}}{2.29} = \frac{F_{AC}}{2.29} = \frac{1.2}{1.2} kN \\
|
||||
F_{AB} = 2.29 kN \to \text{Tension}\\
|
||||
F_{AC} = 2.29 kN \to \text{Compression}
|
||||
\end{gather*}
|
||||
FBD of joint B
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{BE} &= 2.7625 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{BC} &= 2.25 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
FBD of joint C
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{CE} &= 2.21 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
F_{CH} &= 2.86 kN \to \text{Compression}
|
||||
\end{align*}
|
||||
FBD of joint E
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
F_{EH} &= 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
f_{EJ} &= 1.657 kN \to \text{Tension}
|
||||
\end{align*}
|
||||
|
||||
\end{document}
|
||||
135
engg_mech/assignment/t_two.tex
Normal file
135
engg_mech/assignment/t_two.tex
Normal file
@@ -0,0 +1,135 @@
|
||||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{siunitx}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{wrapfig}
|
||||
\graphicspath{{./images/}}
|
||||
\begin{document}
|
||||
\title{Engineering Mechanics}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{17 May, 2020}
|
||||
\maketitle
|
||||
\section*{Question 1}
|
||||
\subsection*{Question 1.a}
|
||||
We shall balance the torque about $C$. $\angle ABC = \theta$, Tension in cable $=T$.
|
||||
\begin{align*}
|
||||
240 (0.4) + 240 (0.8) &= T\sin{\theta} \times 0.18 \\
|
||||
T\sin{\theta} &= 1600 \\
|
||||
T \frac{0.24}{0.3} &= 1600 \\
|
||||
T &= 2000
|
||||
\end{align*}
|
||||
\subsection*{Question 1.b}
|
||||
On making FBD of bracket BCD.\@
|
||||
|
||||
\begin{align*}
|
||||
x-component &= N_x = T\sin{\theta} = 1600 \\
|
||||
y-component &= N_y = T\cos{\theta} + 240 +240 = 1680
|
||||
\end{align*}
|
||||
|
||||
\section*{Question 2}
|
||||
\subsection*{Question 2.a}
|
||||
We shall balance the torque about C
|
||||
\begin{align*}
|
||||
P \times 7.5 &= T \times 5 \\
|
||||
T &= 150 lb
|
||||
\end{align*}
|
||||
\subsection*{Question 2.b}
|
||||
\begin{align*}
|
||||
N_x \text{(reaction at C along x-axis)} &= - (P + T\sin{\ang{37}}) = -190 lb \\
|
||||
N_y \text{(reaction at C along y-axis)} &= - T \cos{\ang{37}} = -120 lb
|
||||
\end{align*}
|
||||
\section*{Question 3}
|
||||
\subsection*{Question 3.a}
|
||||
\[
|
||||
\alpha = 0
|
||||
\]
|
||||
Balance torque about B
|
||||
\begin{align*}
|
||||
N_a \times 20 &= 75 \times 10 \\
|
||||
N_a &= 37.5 lb
|
||||
\end{align*}
|
||||
Balance torque about A
|
||||
\begin{align*}
|
||||
N_b \times 20 &= 75 \times 10 \\
|
||||
N_b &= 37.5 lb
|
||||
\end{align*}
|
||||
\subsection*{Question 3.b}
|
||||
\[
|
||||
\alpha = \ang{90}
|
||||
\]
|
||||
Balance torque about A
|
||||
\begin{align*}
|
||||
N_b \times 20 &= 75 \times 10 \\
|
||||
N_b &= 37.5 lb
|
||||
\end{align*}
|
||||
Balance torque about B
|
||||
\begin{align*}
|
||||
N_a \times 12 &= 75 \times 10 \\
|
||||
N_a &= 62.5 lb
|
||||
\end{align*}
|
||||
\subsection*{Question 3.c}
|
||||
\[
|
||||
\alpha = \ang{30}
|
||||
\]
|
||||
Balance torque about the mid point of horizontal rod
|
||||
\begin{align*}
|
||||
N_a \times 10 &= {(N_b)}_y \times 10 \\
|
||||
N_a &= {(N_b)}_y
|
||||
\end{align*}
|
||||
Balance torque about B
|
||||
\begin{align*}
|
||||
N_a \times 20 &= 75 \times 10 \\
|
||||
N_a &= 37.5 lb \\\\
|
||||
N_a &= N_b \cos{\ang{30}} \\
|
||||
N_b &= 43.30
|
||||
\end{align*}
|
||||
|
||||
\section*{Question 4}
|
||||
\subsection*{Question 4.a}
|
||||
Balance torque about C
|
||||
\begin{align*}
|
||||
120 \times 0.28 &= T \times \frac{150}{250} \times 0.2 + T \times \frac{150}{390} \times 0.36 \\
|
||||
33.6 &= T \times 0.26 \\
|
||||
T &= 129.2 N \approx 130 N
|
||||
\end{align*}
|
||||
\subsection*{Question 4.b}
|
||||
\begin{align*}
|
||||
{(N_c)}_x &= T \times \frac{200}{250} + T \times \frac{360}{390} \\
|
||||
{(N_c)}_x &= 223 N \\
|
||||
{(N_c)}_y &= 120 - \left(T \times \frac{150}{250} + T \times \frac{150}{390}\right) \\
|
||||
{(N_c)}_y &= -7.21 N \\
|
||||
N_c &= \sqrt{223^2 + 7.21^2} N \\
|
||||
N_c &= 224 N
|
||||
\end{align*}
|
||||
|
||||
\section*{Question 5}
|
||||
Balance torque about B
|
||||
\begin{align*}
|
||||
{(N_a)}_y \times 8 &= 4000 \times 2 \\
|
||||
{(N_a)}_y &= 1000 N
|
||||
\end{align*}
|
||||
FBD of Rod
|
||||
\begin{align*}
|
||||
4000 &= {(N_A)}_y + {(N_B)}_y \\
|
||||
4000 &= 1000 + {(N_B)}_y \\
|
||||
{(N_B)}_y &= 3000 \\\\
|
||||
{(N_B)}_y &= N_b \sin{\ang{60}} \\
|
||||
N_B &= 3465 \\
|
||||
{(N_A)}_x &= {(N_B)}_x \\
|
||||
{(N_A)}_x &= N_B \sin{\ang{30}} \\
|
||||
{(N_A)}_x &= 1732
|
||||
\end{align*}
|
||||
\section*{Question 6}
|
||||
First we have to calculate reaction at A
|
||||
\begin{align*}
|
||||
\sum F_x &= 0 \\
|
||||
4000 \cos{\ang{30}} &= A_x \\
|
||||
A_x &= 3464 N
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
\sum F_y &= 0 \\
|
||||
6000 + 4000 \cos{\ang{30}} &= A_y \\
|
||||
A_y &= 8000 N
|
||||
\end{align*}
|
||||
\end{document}
|
||||
1
engg_physics/lab_assignment_1/.gitignore
vendored
Normal file
1
engg_physics/lab_assignment_1/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
page_00.jpg
|
||||
19
engg_physics/lab_assignment_1/generate.sh
Executable file
19
engg_physics/lab_assignment_1/generate.sh
Executable file
@@ -0,0 +1,19 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
text='Name: Ahmad Saalim Lone
|
||||
Enrollment No: 2019BCSE017
|
||||
Subject: Engineering Physics Lab
|
||||
Branch: Computer Science
|
||||
Unit: Semiconductor Physics
|
||||
No. of pages: 6
|
||||
Submission Date: 15 May, 2020
|
||||
Name of concerned teacher:
|
||||
Dr Mohd Zubair Ansari'
|
||||
convert -size 638x877 xc:white \
|
||||
-font 'Fira-Code-Bold' \
|
||||
-pointsize 30 \
|
||||
-fill black \
|
||||
-gravity center \
|
||||
-draw "text 0,0 '$text'" \
|
||||
page_00.jpg
|
||||
convert page_{00..05}.jpg assignment.pdf
|
||||
BIN
engg_physics/lab_assignment_1/page_01.jpg
Normal file
BIN
engg_physics/lab_assignment_1/page_01.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 50 KiB |
BIN
engg_physics/lab_assignment_1/page_02.jpg
Normal file
BIN
engg_physics/lab_assignment_1/page_02.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 21 KiB |
BIN
engg_physics/lab_assignment_1/page_03.jpg
Normal file
BIN
engg_physics/lab_assignment_1/page_03.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 37 KiB |
BIN
engg_physics/lab_assignment_1/page_04.jpg
Normal file
BIN
engg_physics/lab_assignment_1/page_04.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 37 KiB |
BIN
engg_physics/lab_assignment_1/page_05.jpg
Normal file
BIN
engg_physics/lab_assignment_1/page_05.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 34 KiB |
601
maths/assignment-matrices/assign4.tex
Normal file
601
maths/assignment-matrices/assign4.tex
Normal file
@@ -0,0 +1,601 @@
|
||||
\documentclass{article}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\title{Mathematics Assignment 4 --- Matrices}
|
||||
\author{Ahmad Saalim Lone, 2019BCSE017}
|
||||
\date{16 May, 2020}
|
||||
\maketitle
|
||||
|
||||
\section*{Question 1}
|
||||
\begin{align*}
|
||||
A &=
|
||||
\begin{bmatrix}
|
||||
1 & -1 & -1 & 2 \\
|
||||
4 & 2 & 2 & -1 \\
|
||||
2 & 2 & 0 & -2
|
||||
\end{bmatrix}
|
||||
\\
|
||||
PAQ &= \text{Normal form} \\
|
||||
I_3AI_4 &= A_{3 \times 4} \\
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & 1 & 0 \\
|
||||
0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
A
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
&=
|
||||
\begin{bmatrix}
|
||||
1 & -1 & -1 & 2 \\
|
||||
4 & 2 & 2 & -1 \\
|
||||
2 & 2 & 0 & -2
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
|
||||
Applying the following row tranformations on $I_3$ and column tranformations on $I_4$.
|
||||
|
||||
\begin{align*}
|
||||
C_4 &\to C_4 + C_2 \\
|
||||
R_3 &\to \frac{R_3}{2} \\
|
||||
R_2 &\to \frac{R_2 + 2R_1}{3} \\
|
||||
R_1 &\to R_1 + R_3 \\
|
||||
C_1 &\to C_1 - 2 C_4 \\
|
||||
C_4 &\to C_4 + C_3 \\
|
||||
C_2 &\to C_2 - C_1 \\
|
||||
C_3 &\rightleftharpoons C_1 \\
|
||||
C_2 &\rightleftharpoons C_4 \\
|
||||
R_1 &\rightleftharpoons -R_1
|
||||
\end{align*}
|
||||
|
||||
we get
|
||||
\begin{align*}
|
||||
P &=
|
||||
\begin{bmatrix}
|
||||
-1 & 0 & -\frac{1}{2} \\[6pt]
|
||||
\frac{2}{3} & \frac{1}{3} & 0 \\[6pt]
|
||||
0 & 0 & \frac{1}{2}
|
||||
\end{bmatrix}
|
||||
\\
|
||||
Q &=
|
||||
\begin{bmatrix}
|
||||
0 & 0 & 1 & -1 \\
|
||||
0 & 0 & -2 & 3 \\
|
||||
1 & 1 & 0 & 0 \\
|
||||
0 & 1 & -2 & 2
|
||||
\end{bmatrix}
|
||||
\\
|
||||
\text{Normal Form of A} &=
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\section*{Question 2}
|
||||
\[
|
||||
x^2yz = xy^2z^3 = x^3y^2z = e
|
||||
\]
|
||||
|
||||
Taking $\ln$ on both sides
|
||||
\begin{align*}
|
||||
2\ln{x} + \ln{y} \ln{z} &= 1 \\
|
||||
\ln{x} + 2 \ln{y} + 3 \ln{z} &= 1 \\
|
||||
3\ln{x} + 2\ln{y} + \ln{z} &= 1
|
||||
\end{align*}
|
||||
|
||||
\[
|
||||
\text{Augemented Matrix} = [A:B] =
|
||||
\begin{bmatrix}
|
||||
2 & 1 & 1 & : & 1 \\
|
||||
1 & 2 & 3 & : & 1 \\
|
||||
3 & 2 & 1 & : & 1
|
||||
\end{bmatrix}
|
||||
\]
|
||||
After ppling the following tranformations
|
||||
\begin{align*}
|
||||
R_3 &\to R_3 - R_1 \\
|
||||
R_2 &\to R_2 - R_1 \\
|
||||
R_2 &\to R_2 - R_1 \\
|
||||
R_1 &\to R_1 -R_3
|
||||
\end{align*}
|
||||
|
||||
We get
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 1 & : & 1 \\
|
||||
-3 & 0 & 1 & : & -1 \\
|
||||
1 & 1 & 0 & : & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
$Rank(A) = Rank(A:B) = 3 = n$\\
|
||||
$\therefore$ unique solution.
|
||||
\section*{Question 3}
|
||||
\begin{align*}
|
||||
x - cy - bz &= 0 \\
|
||||
cx - y + az &= 0 \\
|
||||
bx + ay - z &= 0 \\
|
||||
\text{Augemented matrix} &=
|
||||
\begin{bmatrix}
|
||||
1 & -c & -b & : & 0 \\
|
||||
c & -1 & a & : & 0 \\
|
||||
b & a & -1 & : & 0
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
|
||||
Applying the following tranformations
|
||||
\begin{align*}
|
||||
R_2 &\to R_2 - cR_1 \\
|
||||
R_3 &\to R_3 - bR_1 \\
|
||||
R_2 &\to \frac{R_2}{c^2 - 1} \\
|
||||
R_3 &\to R_3 - (a + bc)R_2
|
||||
\end{align*}
|
||||
we get
|
||||
\[
|
||||
C =
|
||||
\begin{bmatrix}
|
||||
1 & -c & -b & : & 0 \\[6pt]
|
||||
0 & 1 & \frac{bc+c}{c^2 - 1} & : & 0 \\[6pt]
|
||||
0 & 0 & b^2 - 1 - \frac{{(a+bc)}^2}{c^2 - 1} & : & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
For non trivial solutions $Rank(A) = Rank(c) \ne number\;of\;unknows$
|
||||
\begin{align*}
|
||||
b^2 - 1 \frac{{(a+bc)}^2}{c^2 -1} &= 0 \\
|
||||
\implies a^2 + b^2 + c^2 + 2abc &= 1 \\
|
||||
\end{align*}
|
||||
Now
|
||||
\begin{align*}
|
||||
x - cy -bz &= 0 \\
|
||||
y + \left(\frac{bc + a}{c^2 - 1}z\right) &= 0 \\
|
||||
\end{align*}
|
||||
We get
|
||||
\begin{align*}
|
||||
x &= \frac{ac + b}{1-c^2}z \\
|
||||
y &= \frac{bc + a}{1 - c^2}z \\
|
||||
z &= z \\
|
||||
x : y : z &= \sqrt{|1 - a^2|} : \sqrt{|1 - b^2|} : \sqrt{|1 -c^2|}
|
||||
\end{align*}
|
||||
|
||||
\section{Question 4}
|
||||
\begin{align*}
|
||||
A &=
|
||||
\begin{bmatrix}
|
||||
3 & -4 & 4 \\
|
||||
1 & -2 & 44 \\
|
||||
1 & -1 & 3
|
||||
\end{bmatrix} \\
|
||||
|A - \lambda I| &= 0\\
|
||||
\begin{vmatrix}
|
||||
3 - \lambda & -4 & 4 \\
|
||||
1 & -2 - \lambda & 44 \\
|
||||
1 & -1 & 3 - \lambda
|
||||
\end{vmatrix} &= 0
|
||||
\end{align*}
|
||||
|
||||
\( \lambda = -1, 2, 3 \) are Eigen Values
|
||||
|
||||
For $\lambda = -1$
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
4 & -4 & 4 \\
|
||||
1 & -1 & 4 \\
|
||||
1 & -1 & 4
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
x \\
|
||||
y \\
|
||||
z
|
||||
\end{bmatrix}
|
||||
&=
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
0
|
||||
\end{bmatrix} \\
|
||||
\text{Eigen Vector} &=
|
||||
\begin{bmatrix}
|
||||
1 \\
|
||||
1 \\
|
||||
0
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
For $\lambda = 2$
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
1 & -4 & 4 \\
|
||||
1 & -4 & 4 \\
|
||||
1 & -1 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
x \\
|
||||
y \\
|
||||
z
|
||||
\end{bmatrix}
|
||||
&=
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
0
|
||||
\end{bmatrix} \\
|
||||
\text{Eigen Vector} &=
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
1 \\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
For $\lambda = 3$
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
0 & -4 & 4 \\
|
||||
1 & -5 & 4 \\
|
||||
1 & -1 & 0
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
x \\
|
||||
y \\
|
||||
z
|
||||
\end{bmatrix}
|
||||
&=
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
0
|
||||
\end{bmatrix} \\
|
||||
\text{Eigen Vector} &=
|
||||
\begin{bmatrix}
|
||||
1 \\
|
||||
1 \\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\section*{Question 5}
|
||||
\begin{align*}
|
||||
A &=
|
||||
\begin{bmatrix}
|
||||
2 & 2 & 0 \\
|
||||
2 & 1 & 1 \\
|
||||
-7 & 2 & -3
|
||||
\end{bmatrix}
|
||||
\\
|
||||
|A - \lambda I| &= 0 \\
|
||||
\begin{vmatrix}
|
||||
2 - \lambda & 2 & 0 \\
|
||||
2 & 1 - \lambda & 1 \\
|
||||
-7 & 2 & -3 - \lambda
|
||||
\end{vmatrix} &= 0
|
||||
\end{align*}
|
||||
|
||||
Eigen values $\lambda = 1, 3, -4$ \\
|
||||
|
||||
1\textsuperscript{st} eigen value of $A^2 -2 A + I = 1^2 - 2(1) + 1 = 0$
|
||||
|
||||
2\textsuperscript{nd} eigen value of $A^2 -2 A + I = 3^2 - 2(3) + 1 = 4$
|
||||
|
||||
3\textsuperscript{rd} eigen value of $A^2 -2 A + I = {(-4)}^2 - 2(-4) + 1 = 25$
|
||||
|
||||
\section*{Question 6}
|
||||
\begin{align*}
|
||||
A &=
|
||||
\begin{bmatrix}
|
||||
7 & 3 \\
|
||||
2 & 6
|
||||
\end{bmatrix}
|
||||
\\
|
||||
| A - \lambda I| &= 0 \\
|
||||
\begin{vmatrix}
|
||||
7 - \lambda & 3 \\
|
||||
2 & 6 - \lambda
|
||||
\end{vmatrix} &= 0 \\
|
||||
(7 - \lambda)(6 - \lambda) - 5 &= 0 \\
|
||||
(\lambda - 4)(\lambda - 9) &= 0 \\
|
||||
A^2 - 13 A + 36 &= 0 \\
|
||||
A^2 &= 13 A - 36 \\
|
||||
A^2\cdot A &= (13 A - 36)A \\
|
||||
A^3 &= 13 A^2 - 36A \\
|
||||
A^3 &=
|
||||
\begin{bmatrix}
|
||||
715 & 507 \\
|
||||
338 & 546
|
||||
\end{bmatrix}
|
||||
-
|
||||
\begin{bmatrix}
|
||||
252 & 108 \\
|
||||
72 & 216
|
||||
\end{bmatrix} \\
|
||||
A^3 &=
|
||||
\begin{bmatrix}
|
||||
463 & 399 \\
|
||||
266 & 330
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
|
||||
\section*{Question 7}
|
||||
Suppose that $\lambda$ is a (possibly complex) eigen value of the real symmetric matrix $A$. Thus, there is a non-zero vector $V$, also with complex entries such that $AV = \lambda V$. By taking the complex conjugate of both sides and noting that $\overline{A} = A$ since $A$ has real entries, we get $\overline{AV} = \overline{\lambda V} \implies A\overline{V} = \overline{\lambda}\;\overline{V}$. Then using that $A^T = A$,
|
||||
\begin{gather*}
|
||||
\overline{V}^T AV = \overline{V}^t(AV) = \overline{V}(\lambda V) = \lambda( \overline{V}V ) \\
|
||||
\overline{V}^T AV = {(A \overline{V})}^T V = {( \overline{\lambda}\;\overline{V} )}^T V = \overline{\lambda} ( \overline{V} V )
|
||||
\end{gather*}
|
||||
|
||||
Since $V \ne 0$, we have $ \overline{V}V \ne 0$. Thus $\lambda = \overline{\lambda}$, which means $\lambda \in R$.
|
||||
|
||||
\section*{Question 8}
|
||||
Quadratic Form $ax_1^2 + cx_2^2 - 2bx_1x_2$
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
a & -b \\
|
||||
-b & c
|
||||
\end{bmatrix}
|
||||
\]
|
||||
Convert it to diagonal matrix by applying
|
||||
\begin{align*}
|
||||
R_2 &\to R_2 + \frac{b}{a}R_1 \\
|
||||
C_2 &\to C_2 + \frac{b}{a}C_1
|
||||
\end{align*}
|
||||
Now, we get
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
a & 0 \\
|
||||
0 & c - \frac{b^2}{a}
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
Nature $\to$ positive definite $\to$ when $rank(r) = index(s)$ or when all eigen values are positive i.e. $a > 0$ \& $c - \frac{b^2}{a} > 0 \implies ac -b^2 > 0$. Hence proved.
|
||||
|
||||
\section*{Question 9}
|
||||
\(
|
||||
A =
|
||||
\begin{bmatrix}
|
||||
\lambda & 1 & 1 \\
|
||||
1 & \lambda & -1 \\
|
||||
1 & -1 & \lambda
|
||||
\end{bmatrix}
|
||||
\) is a symmetric matrix obtained when compared to Quadratic form $\lambda(x^2+ y^2 + z^2) + 2xy + 2zx -2yz$.
|
||||
|
||||
Now, convert $A$ into diagonal matrix by:
|
||||
\begin{align*}
|
||||
C_1 &\to C_1 + C_3 \\
|
||||
C_1 &\to \frac{C_1}{\lambda + 1} \\
|
||||
R_3 &\to R_3 - R_1 \\
|
||||
C_3 &\to C_3 - C_1 \\
|
||||
C_2 &\to C_2 -C_1 \\
|
||||
C_3 &\to C_3 + \frac{C_2}{\lambda} \\
|
||||
R_3 &\to R_3 + \frac{2R_2}{\lambda}
|
||||
\end{align*}
|
||||
|
||||
we get,
|
||||
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & \lambda & 0 \\
|
||||
0 & 0 & \lambda - \frac{2}{\lambda} - 1
|
||||
\end{bmatrix}
|
||||
\]
|
||||
For definite positive nature, all Eigen values must be positive i.e. $\lambda > 0$, $\lambda - \frac{2}{\lambda} - 1 > 0$. Taking intersection of these two, we get $\lambda \in (2, \infty)$.
|
||||
|
||||
\section*{Question 10}
|
||||
|
||||
Multiplication of all the eigen values = determinant of the matrix. For singular matrix, determinant value = 0.
|
||||
\begin{align*}
|
||||
\text{Eigen Values} &= 2, 3, a \\
|
||||
6a &= 0 \\
|
||||
a &= 0
|
||||
\end{align*}
|
||||
|
||||
\section*{Question 11}
|
||||
|
||||
Quadratic Form $x_2^2 + 2x_2^2 - 5x_3^2$
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & 2 & 0 \\
|
||||
0 & 0 & -5
|
||||
\end{bmatrix}
|
||||
\]
|
||||
\begin{align*}
|
||||
index(s) &= 2\;\text{(No of positive terms)} \\
|
||||
rank(r) &= 3 \\
|
||||
signature &= 2s -r = 4 - 3 = 1
|
||||
\end{align*}
|
||||
|
||||
\section*{Question 12}
|
||||
|
||||
Quadratic form $ax^2 + 2bcy + cy^2$.
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
a & b \\
|
||||
b & c
|
||||
\end{bmatrix}
|
||||
\]
|
||||
Convert it into diagonal matrix by doing:
|
||||
\begin{align*}
|
||||
R_2 &\to R_2 - \left(\frac{b}{a}\right)R_1 \\
|
||||
C_2 &\to C_2 - \left(\frac{b}{a}\right)C_1
|
||||
\end{align*}
|
||||
|
||||
Finally, we get
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
a & 0 \\
|
||||
0 & c - \frac{b^2}{a}
|
||||
\end{bmatrix}
|
||||
\]
|
||||
For positive definite, $a>0$ and $ac -b^2 > 0$. \\
|
||||
For negative definite, $a<0$ and $ac -b^2 > 0$. \\
|
||||
Roots of the quadratic equation ($ax^2 + 2bx + c = 0$) are imaginary when $D < 0$. \\
|
||||
${(2b)}^2 - 4ac = 4( b^2 - ac )$ is always negative
|
||||
|
||||
\section*{Question 13}
|
||||
\begin{align*}
|
||||
X_1 &=
|
||||
\begin{bmatrix}
|
||||
1 \\
|
||||
2 \\
|
||||
-3 \\
|
||||
4
|
||||
\end{bmatrix}
|
||||
\\
|
||||
X_2 &=
|
||||
\begin{bmatrix}
|
||||
1 \\
|
||||
-5 \\
|
||||
8 \\
|
||||
-7
|
||||
\end{bmatrix}
|
||||
\\
|
||||
X_3 &=
|
||||
\begin{bmatrix}
|
||||
1 \\
|
||||
-5 \\
|
||||
8 \\
|
||||
-7
|
||||
\end{bmatrix}
|
||||
\\
|
||||
\lambda_1 X_1 + \lambda_2 X_2 + \lambda_3 X_3 &= 0 \\
|
||||
\begin{bmatrix}
|
||||
1 & 1 & 1 \\
|
||||
2 & -5 & -5 \\
|
||||
-3 & 8 & 8 \\
|
||||
4 & -7 & -7
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
\lambda_1 \\
|
||||
\lambda_2 \\
|
||||
\lambda_3
|
||||
\end{bmatrix} &=
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
0 \\
|
||||
0
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
Applying the following tranformations
|
||||
\begin{align*}
|
||||
R_2 &\to R_2 - 2R_1 \\
|
||||
R_2 &\to -\frac{R_2}{7} \\
|
||||
R_3 &\to R_3 + R_4 \\
|
||||
R_3 &\to R_3 - R_1 \\
|
||||
R_1 &\to R_1 - R_2 \\
|
||||
R_3 &\to R_3 - 4 R_1 \\
|
||||
R_4 &\to -\frac{R_4}{7} \\
|
||||
R_4 &\to R_4 - R_2
|
||||
\end{align*}
|
||||
we get
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
1 & 2 & 0 \\
|
||||
0 & 1 & 1 \\
|
||||
0 & 0 & 0 \\
|
||||
0 & 0 & 0
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
\lambda_1 \\
|
||||
\lambda_2 \\
|
||||
\lambda_3
|
||||
\end{bmatrix}
|
||||
&=
|
||||
\begin{bmatrix}
|
||||
0 \\
|
||||
0 \\
|
||||
0 \\
|
||||
0
|
||||
\end{bmatrix} \\
|
||||
\lambda_1 + 2\lambda_2 &= 0 \\
|
||||
\lambda_2 + \lambda_3 &= 0
|
||||
\therefore \\
|
||||
\lambda_1 &= t \\
|
||||
\lambda_2 &= -\frac{t}{2} \\
|
||||
\lambda_3 &= \frac{t}{2}
|
||||
\end{align*}
|
||||
Putting the values, we get
|
||||
|
||||
\[
|
||||
2 X_1 - X_2 + X_3 = 0
|
||||
\]
|
||||
|
||||
\section*{Question 14}
|
||||
|
||||
\begin{align*}
|
||||
(2 - \lambda)x_1 + (-2)x_2 + x_3 &= 0 \\
|
||||
2x_1 - (\lambda + 3) x_2 + 2x_3 &= 0 \\
|
||||
-x_1 + 2x_2 - \lambda x_3 &= 0
|
||||
\end{align*}
|
||||
|
||||
\(
|
||||
Rank(A) = Rank(\text{augemented matrix}) < 3
|
||||
\) for non trivial solutions.
|
||||
|
||||
Check the determinant first, $\Delta = 0$
|
||||
|
||||
$\Delta = 0$ gets us $\lambda = 1, 3$
|
||||
|
||||
Now, for augemented matrix $[A:B]$, put $\lambda = 1, -3$ in \(
|
||||
\begin{bmatrix}
|
||||
2-\lambda & -2 & 1 & : & 0 \\
|
||||
2 & -(\lambda + 3) & 2 & : & 0 \\
|
||||
-1 & 2 & -\lambda & : & 0
|
||||
\end{bmatrix}
|
||||
\)
|
||||
|
||||
For $\lambda = 1$
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
1 & -2 & 1 & : & 0 \\
|
||||
2 & -4 & 2 & : & 0 \\
|
||||
-1 & 2 & -1 & : & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
Doing transformations to form row echelon form, we get
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
1 & -2 & 1 & : & 0 \\
|
||||
0 & 0 & 0 & : & 0 \\
|
||||
0 & 0 & 0 & : & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
\begin{align*}
|
||||
x_1 -2x_2 + x_3 &= 0 \\
|
||||
if\;x_2 = k,\;x_3 = t, then\;x_1 &= 2k - t
|
||||
\end{align*}
|
||||
For $\lambda = -3$
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
5 & -2 & 1 & : & 0 \\
|
||||
2 & 0 & 2 & : & 0 \\
|
||||
-1 & 2 & 3 & : & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
|
||||
Doing transformations to form row echelon form, we get
|
||||
\[
|
||||
\begin{bmatrix}
|
||||
5 & -2 & 1 & : & 0 \\
|
||||
0 & \frac{4}{5} & \frac{8}{5} & : & 0 \\
|
||||
0 & 0 & 0 & 0 & 0
|
||||
\end{bmatrix}
|
||||
\]
|
||||
\begin{align*}
|
||||
5x_1 - 2x_2 + x_3 &= 0 \\
|
||||
\frac{4x_2}{5} + \frac{8x_3}{5} &= 0 \\
|
||||
if\;x_3 = t, then \\
|
||||
x_1 &= - t \\
|
||||
x_2 &= -2t \\
|
||||
x_3 &= t
|
||||
\end{align*}
|
||||
|
||||
\section*{Question 15}
|
||||
\subsection*{Part i}
|
||||
Since $A + A^T = 0$, $A$ must either be skew symmetric. If A is skew symmetric, we know that the rank of an odd order skew symmetric matrix must be even. $\therefore Rank \leq 2020$
|
||||
\subsection*{Part ii}
|
||||
Inverse does not exist as $A$ is singular matrix.
|
||||
\end{document}
|
||||
Reference in New Issue
Block a user